全等變換
平移:平行等線段(平行四邊形)
對稱:角平分線或垂直或半形
旋轉:相鄰等線段繞公共頂點旋轉
對稱全等模型
說明:以角平分線為軸在角兩邊進行截長補短或者作邊的垂線,形成對稱全等。兩邊進行邊或者角的等量代換,產生聯絡。垂直也可以做為軸進行對稱全等。
對稱半形模型
說明:上圖依次是45°、30°、22.5°、15°及有一個角是30°直角三角形的對稱(翻折),翻折成正方形或者等腰直角三角形、等邊三角形、對稱全等。
旋轉全等模型
半形:有一個角含1/2角及相鄰線段
自旋轉:有一對相鄰等線段,需要構造旋轉全等
共旋轉:有兩對相鄰等線段,直接尋找旋轉全等
中點旋轉:倍長中點相關線段轉換成旋轉全等問題
旋轉半形模型
說明:旋轉半形的特徵是相鄰等線段所成角含一個二分之一角,透過旋轉將另外兩個和為二分之一的角拼接在一起,成對稱全等。
自旋轉模型
構造方法:
遇60度旋60度,造等邊三角形
遇90度旋90度,造等腰直角
遇等腰旋頂點,造旋轉全等
遇中點旋180度,造中心對稱
共旋轉模型
說明:旋轉中所成的全等三角形,第三邊所成的角是一個經常考察的內容。透過“8”字模型可以證明。
模型變換
說明:模型變形主要是兩個正多邊形或者等腰三角形的夾角的變化,另外是等腰直角三角形與正方形的混用。
當遇到複雜圖形找不到旋轉全等時,先找兩個正多邊形或者等腰三角形的公共頂點,圍繞公共頂點找到兩組相鄰等線段,分組組成三角形證全等。
全等變換
平移:平行等線段(平行四邊形)
對稱:角平分線或垂直或半形
旋轉:相鄰等線段繞公共頂點旋轉
對稱全等模型
說明:以角平分線為軸在角兩邊進行截長補短或者作邊的垂線,形成對稱全等。兩邊進行邊或者角的等量代換,產生聯絡。垂直也可以做為軸進行對稱全等。
對稱半形模型
說明:上圖依次是45°、30°、22.5°、15°及有一個角是30°直角三角形的對稱(翻折),翻折成正方形或者等腰直角三角形、等邊三角形、對稱全等。
旋轉全等模型
半形:有一個角含1/2角及相鄰線段
自旋轉:有一對相鄰等線段,需要構造旋轉全等
共旋轉:有兩對相鄰等線段,直接尋找旋轉全等
中點旋轉:倍長中點相關線段轉換成旋轉全等問題
旋轉半形模型
說明:旋轉半形的特徵是相鄰等線段所成角含一個二分之一角,透過旋轉將另外兩個和為二分之一的角拼接在一起,成對稱全等。
自旋轉模型
構造方法:
遇60度旋60度,造等邊三角形
遇90度旋90度,造等腰直角
遇等腰旋頂點,造旋轉全等
遇中點旋180度,造中心對稱
共旋轉模型
說明:旋轉中所成的全等三角形,第三邊所成的角是一個經常考察的內容。透過“8”字模型可以證明。
模型變換
說明:模型變形主要是兩個正多邊形或者等腰三角形的夾角的變化,另外是等腰直角三角形與正方形的混用。
當遇到複雜圖形找不到旋轉全等時,先找兩個正多邊形或者等腰三角形的公共頂點,圍繞公共頂點找到兩組相鄰等線段,分組組成三角形證全等。