回覆列表
  • 1 # 藍風24

    方法一,用solve函式把隱函式顯化,然後畫圖。方法二,利用極座標與直角座標的關係,把極座標隱函式變為直角座標隱函式,利用ezplot直接畫直角座標隱函式。

    方法一提供案例如下:

    clc;clear;

    syms r t%r為距離座標 t為角度座標

    f(r,t)=r-2*cos(t)-3/r==0;%定義一個對r、t的隱函式,f=0時其實這是一個圓

    r_sln=solve(f,r)%由於是二次的 會有2個解

    ezpolar(r_sln(1));

    figure;

    ezpolar(r_sln(2));

    畫出的圖一模一樣,證明2個解等價。下面是其中的一個圖

    方法二。經過測試,這裡有一個大坑,本人一度被坑。角度t寫成 atan(y/x) 和 atan(y,x) 差距巨大,寫成前者會出現完全畫不出圖的情況。

    程式碼示例(在之前示例後面加上):

    syms x y;

    f1(x,y)=f((x^2+y^2)^0.5,atan2(y,x));

    figure

    ezplot(f1);

    由於之前答的高質量,所以沒有用你的例子,現在被打回了,倒是無所謂了。

    不過。。樓主的例子有點問題啊,貌似。用方法一得出了那麼個東西:

  • 中秋節和大豐收的關聯?
  • 新手如何讀《曾文正公全集》?