1、相似三角形的有關概念
(1)相似三角形:對應角相等,對應邊成比例的兩個三角形是相似三角形.
(2)相似比:相似三角形對應邊的比.
2、平行於三角形一邊的定理
平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.
3、三角形相似的判定
(1)兩角對應相等,兩三角形相似.
(2)兩邊對應成比例且夾角相等,兩三角形相似.
(3)三邊對應成比例,兩三角形相似.
(4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,
那麼這兩個直角三角形相似.
4、相似三角形的性質
(1)相似三角形對應角相等,對應邊成比例.
(2)相似三角形對應高的比,對應中線的比和對應角平分線的比都等於相似比.
(3)相似三角形周長的比等於相似比.
全等
性質定理就是全等三角形的三邊邊長、三個角都對應相等
判定定理
SAS(邊角邊)
ASA(角邊角)
AAS(角角邊)
SSS(邊邊邊)
HL(直角三角形)
注意邊邊角不能用~!
有許多人都用邊邊角~!
1、相似三角形的有關概念
(1)相似三角形:對應角相等,對應邊成比例的兩個三角形是相似三角形.
(2)相似比:相似三角形對應邊的比.
2、平行於三角形一邊的定理
平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.
3、三角形相似的判定
(1)兩角對應相等,兩三角形相似.
(2)兩邊對應成比例且夾角相等,兩三角形相似.
(3)三邊對應成比例,兩三角形相似.
(4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,
那麼這兩個直角三角形相似.
4、相似三角形的性質
(1)相似三角形對應角相等,對應邊成比例.
(2)相似三角形對應高的比,對應中線的比和對應角平分線的比都等於相似比.
(3)相似三角形周長的比等於相似比.
全等
性質定理就是全等三角形的三邊邊長、三個角都對應相等
判定定理
SAS(邊角邊)
ASA(角邊角)
AAS(角角邊)
SSS(邊邊邊)
HL(直角三角形)
注意邊邊角不能用~!
有許多人都用邊邊角~!