基本不等式中常用公式:
(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(當且僅當a=b時,等號成立)
(2)√(ab)≤(a+b)/2。(當且僅當a=b時,等號成立)
(3)a²+b²≥2ab。(當且僅當a=b時,等號成立)
(4)ab≤(a+b)²/4。(當且僅當a=b時,等號成立)
(5)||a|-|b| |≤|a+b|≤|a|+|b|。(當且僅當a=b時,等號成立)
基本不等式是主要應用於求某些函式的最值及證明的不等式。其表述為:兩個正實數的算術平均數大於或等於它們的幾何平均數。
在使用基本不等式時,要牢記“一正”“二定”“三相等”的七字真言。“一正”就是指兩個式子都為正數,“二定”是指應用基本不等式求最值時,和或積為定值,“三相等”是指當且僅當兩個式子相等時,才能取等號。
不等式的特殊性質有以下三種:
①不等式性質1:不等式的兩邊同時加上(或減去)同一個數(或式子),不等號的方向不變;
②不等式性質2:不等式的兩邊同時乘(或除以)同一個正數,不等號的方向不變;
基本不等式中常用公式:
(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(當且僅當a=b時,等號成立)
(2)√(ab)≤(a+b)/2。(當且僅當a=b時,等號成立)
(3)a²+b²≥2ab。(當且僅當a=b時,等號成立)
(4)ab≤(a+b)²/4。(當且僅當a=b時,等號成立)
(5)||a|-|b| |≤|a+b|≤|a|+|b|。(當且僅當a=b時,等號成立)
拓展資料基本不等式是主要應用於求某些函式的最值及證明的不等式。其表述為:兩個正實數的算術平均數大於或等於它們的幾何平均數。
在使用基本不等式時,要牢記“一正”“二定”“三相等”的七字真言。“一正”就是指兩個式子都為正數,“二定”是指應用基本不等式求最值時,和或積為定值,“三相等”是指當且僅當兩個式子相等時,才能取等號。
不等式的特殊性質有以下三種:
①不等式性質1:不等式的兩邊同時加上(或減去)同一個數(或式子),不等號的方向不變;
②不等式性質2:不等式的兩邊同時乘(或除以)同一個正數,不等號的方向不變;