三角視差法
河內天體的距離又稱為視差,恆星對日地平均距離(a)的張角叫做恆星的三角視差(p),則較近的恆星的距離D可表示為:sinπ=a/D
若π很小,π以角秒錶示,且單位取秒差距(pc),則有:D=1/π
用週年視差法測定恆星距離,有一定的侷限性,因為恆星離我們愈遠,π就愈小,實際觀測中很難測定。三角視差是一切天體距離測量的基礎,至今用這種方法測量了約10,000多顆恆星。
天文學上的距離單位除天文單位(AU)、秒差距(pc)外,還有光年(ly),即光在真空中一年所走過的距離,相當94605億千米。三種距離單位的關係是:
1秒差距(pc)=206265天文單位(AU)=3.26光年=3.09×1013千米
1光年(1y)=0.307秒差距(pc)=63240天文單位(Au)=0.95×1013千米。
對於距離更遙遠的恆星,比如距離超過110pc的恆星,由於週年視差非常小,無法用三角視差法測出。於是,又發展了另外一種比較方便的方法--分光視差法。該方法的核心是根據恆星的譜線強度去確定恆星的光度,知道了光度(絕對星等M),由觀測得到的視星等(m)就可以得到距離。
m - M= -5 + 5logD.
大質量的恆星,當演化到晚期時,會呈現出不穩定的脈動現象,形成脈動變星。在這些脈動變星中,有一類脈動週期非常規則,中文名叫造父。造父是中國古代的星官名稱。仙王座δ星中有一顆名為造父一,它是一顆亮度會發生變化的“變星”。變星的光變原因很多。造父一屬於脈動變星一類。當它的星體膨脹時就顯得亮些,體積縮小時就顯得暗些。造父一的這種亮度變化很有規律,它的變化週期是5天8小時46分38秒鐘,稱為“光變週期”。在恆星世界裡,凡跟造父一有相同變化的變星,統稱“造父變星”。
1912 年美國一位女天文學家勒維特(Leavitt 1868--1921)研究小麥哲倫星系內的造父變星的星等與光變週期時發現:光變週期越長的恆星,其亮度就越大。這就是對後來測定恆星距離很有用的“周光關係”。目前在銀河系內共發現了700多顆造父變星。許多河外星系的距離都是靠這個量天尺測量的。
20 世紀初,光譜研究發現幾乎所有星系的都有紅移現象。所謂紅移是指觀測到的譜線的波長(l)比相應的實驗室測知的譜線的波長(l0)要長,而在光譜中紅光的波長較長,因而把譜線向波長較長的方向的移動叫做光譜的紅移,z=(l-l0)/ l0。1929年哈勃用2.5米大型望遠鏡觀測到更多的河外星系,又發現星系距我們越遠,其譜線紅移量越大。
譜線紅移的流行解釋是大爆炸宇宙學說。哈勃指出天體紅移與距離有關:Z = H*d /c,這就是著名的哈勃定律,式中Z為紅移量;c為光速;d為距離;H為哈勃常數,其值為50~80千米/(秒·兆秒差距)。根據這個定律,只要測出河外星系譜線的紅移量Z,便可算出星系的距離D。用譜線紅移法可以測定遠達百億光年計的距離。
1957年,O.C.威爾遜和巴普兩人發現,晚型(G、K和M型)恆星光譜(見恆星光譜分類)中電離鈣的反轉發射線寬度的對數與恆星的絕對星等之間存在著線性關係。對這條譜線進行光譜分析,便可得到晚型恆星的距離。[1]
在恆星的光譜中出現有星際物質所產生的吸收線。這些星際吸收線的強度與恆星的距離有關:星越遠,星和觀測者之間存在的星際物質越多,星際吸收線就越強。利用這個關係可測定恆星的距離。常用的星際吸收線是最強的電離鈣的K線和中性鈉的D雙線。不過這個方法只適用於O型和早B型星,因為其他恆星本身也會產生K線和D線,這種譜線同星際物質所產生的同樣譜線混合在一起無法區分。由於星際物質分佈不均勻,一般說來,用此法測得的距離,精度是不高的。
目視雙星的相對軌道運動遵循開普勒第三定律,即伴星繞主星運轉的軌道橢圓的半長徑的立方與繞轉週期的平方成正比。設主星和伴星的質量分別為m1和m2,以太陽質量為單位表示,繞轉週期P以恆星年(見年)為單位表示,軌道的半長徑的線長度A以天文單位表示,這種雙星在觀測者處所張的角度 α以角秒錶示,則其週年視差π為:,
式中α和P可從觀測得到。因此,如果知道雙星的質量,便可按上述公式求得該雙星的週年視差。如果不知道雙星的質量,則用迭代法解上式,仍可求得較可靠的週年視差。週年視差的倒數就是該雙星以秒差距為單位的距離。
移動星團的成員星都具有相同的空間速度。由於透視作用,它們的自行會聚於天球上的一點或者從某點向外發散,這個點稱為“輻射點”。知道了移動星團的輻射點位置,並從觀測得到n個成員星的自行μk 和視向速度V 噰(k=1,2,…,n),則該星團的平均週年視差為:
式中θk為第k個成員星和輻射點的角距,堸 為 n個成員星的空間速度的平均值。這樣求得的週年視差的精度很高。但目前此法只適用於畢星團。其他移動星團因距離太遠,不能由觀測得到可靠的自行值。
根據對大量恆星的統計分析資料,知道恆星的視差與自行之間有相當密切的關係:自行越大,視差也越大。因此對具有某種共同特徵幷包含有相當數量恆星的星群,可以根據它們的自行的平均值估計它們的平均週年視差。這樣得到的結果是比較可靠的。
銀河系的較差自轉(即在離銀河系核心的距離不同處,有不同的自轉速率)對恆星的視向速度有影響。這種影響的大小與星群離太陽的距離遠近有關,因此可從視向速度的觀測中求出星群的平均距離。這個方法只能應用於離太陽不太遠,距離大約在1,200秒差距以內的恆星。
測定天體的距離是天體測量最重要的研究課題之一,儘管方法很多,但要得到可靠的結果是不容易的。因此,對於某一天體,應儘可能採用幾種方法分別測定它的距離,然後相互校核,才能得到可靠的結果。
我相信沒幾個人能一字不差完整的看完全文
三角視差法
河內天體的距離又稱為視差,恆星對日地平均距離(a)的張角叫做恆星的三角視差(p),則較近的恆星的距離D可表示為:sinπ=a/D
若π很小,π以角秒錶示,且單位取秒差距(pc),則有:D=1/π
用週年視差法測定恆星距離,有一定的侷限性,因為恆星離我們愈遠,π就愈小,實際觀測中很難測定。三角視差是一切天體距離測量的基礎,至今用這種方法測量了約10,000多顆恆星。
天文學上的距離單位除天文單位(AU)、秒差距(pc)外,還有光年(ly),即光在真空中一年所走過的距離,相當94605億千米。三種距離單位的關係是:
1秒差距(pc)=206265天文單位(AU)=3.26光年=3.09×1013千米
1光年(1y)=0.307秒差距(pc)=63240天文單位(Au)=0.95×1013千米。
分光視差法對於距離更遙遠的恆星,比如距離超過110pc的恆星,由於週年視差非常小,無法用三角視差法測出。於是,又發展了另外一種比較方便的方法--分光視差法。該方法的核心是根據恆星的譜線強度去確定恆星的光度,知道了光度(絕對星等M),由觀測得到的視星等(m)就可以得到距離。
m - M= -5 + 5logD.
造父周光關係測距法大質量的恆星,當演化到晚期時,會呈現出不穩定的脈動現象,形成脈動變星。在這些脈動變星中,有一類脈動週期非常規則,中文名叫造父。造父是中國古代的星官名稱。仙王座δ星中有一顆名為造父一,它是一顆亮度會發生變化的“變星”。變星的光變原因很多。造父一屬於脈動變星一類。當它的星體膨脹時就顯得亮些,體積縮小時就顯得暗些。造父一的這種亮度變化很有規律,它的變化週期是5天8小時46分38秒鐘,稱為“光變週期”。在恆星世界裡,凡跟造父一有相同變化的變星,統稱“造父變星”。
1912 年美國一位女天文學家勒維特(Leavitt 1868--1921)研究小麥哲倫星系內的造父變星的星等與光變週期時發現:光變週期越長的恆星,其亮度就越大。這就是對後來測定恆星距離很有用的“周光關係”。目前在銀河系內共發現了700多顆造父變星。許多河外星系的距離都是靠這個量天尺測量的。
譜線紅移測距法20 世紀初,光譜研究發現幾乎所有星系的都有紅移現象。所謂紅移是指觀測到的譜線的波長(l)比相應的實驗室測知的譜線的波長(l0)要長,而在光譜中紅光的波長較長,因而把譜線向波長較長的方向的移動叫做光譜的紅移,z=(l-l0)/ l0。1929年哈勃用2.5米大型望遠鏡觀測到更多的河外星系,又發現星系距我們越遠,其譜線紅移量越大。
譜線紅移的流行解釋是大爆炸宇宙學說。哈勃指出天體紅移與距離有關:Z = H*d /c,這就是著名的哈勃定律,式中Z為紅移量;c為光速;d為距離;H為哈勃常數,其值為50~80千米/(秒·兆秒差距)。根據這個定律,只要測出河外星系譜線的紅移量Z,便可算出星系的距離D。用譜線紅移法可以測定遠達百億光年計的距離。
威爾遜-巴普法1957年,O.C.威爾遜和巴普兩人發現,晚型(G、K和M型)恆星光譜(見恆星光譜分類)中電離鈣的反轉發射線寬度的對數與恆星的絕對星等之間存在著線性關係。對這條譜線進行光譜分析,便可得到晚型恆星的距離。[1]
星際視差法在恆星的光譜中出現有星際物質所產生的吸收線。這些星際吸收線的強度與恆星的距離有關:星越遠,星和觀測者之間存在的星際物質越多,星際吸收線就越強。利用這個關係可測定恆星的距離。常用的星際吸收線是最強的電離鈣的K線和中性鈉的D雙線。不過這個方法只適用於O型和早B型星,因為其他恆星本身也會產生K線和D線,這種譜線同星際物質所產生的同樣譜線混合在一起無法區分。由於星際物質分佈不均勻,一般說來,用此法測得的距離,精度是不高的。
力學視差法目視雙星的相對軌道運動遵循開普勒第三定律,即伴星繞主星運轉的軌道橢圓的半長徑的立方與繞轉週期的平方成正比。設主星和伴星的質量分別為m1和m2,以太陽質量為單位表示,繞轉週期P以恆星年(見年)為單位表示,軌道的半長徑的線長度A以天文單位表示,這種雙星在觀測者處所張的角度 α以角秒錶示,則其週年視差π為:,
式中α和P可從觀測得到。因此,如果知道雙星的質量,便可按上述公式求得該雙星的週年視差。如果不知道雙星的質量,則用迭代法解上式,仍可求得較可靠的週年視差。週年視差的倒數就是該雙星以秒差距為單位的距離。
星群視差法移動星團的成員星都具有相同的空間速度。由於透視作用,它們的自行會聚於天球上的一點或者從某點向外發散,這個點稱為“輻射點”。知道了移動星團的輻射點位置,並從觀測得到n個成員星的自行μk 和視向速度V 噰(k=1,2,…,n),則該星團的平均週年視差為:
式中θk為第k個成員星和輻射點的角距,堸 為 n個成員星的空間速度的平均值。這樣求得的週年視差的精度很高。但目前此法只適用於畢星團。其他移動星團因距離太遠,不能由觀測得到可靠的自行值。
統計視差法根據對大量恆星的統計分析資料,知道恆星的視差與自行之間有相當密切的關係:自行越大,視差也越大。因此對具有某種共同特徵幷包含有相當數量恆星的星群,可以根據它們的自行的平均值估計它們的平均週年視差。這樣得到的結果是比較可靠的。
自轉視差法銀河系的較差自轉(即在離銀河系核心的距離不同處,有不同的自轉速率)對恆星的視向速度有影響。這種影響的大小與星群離太陽的距離遠近有關,因此可從視向速度的觀測中求出星群的平均距離。這個方法只能應用於離太陽不太遠,距離大約在1,200秒差距以內的恆星。
測定天體的距離是天體測量最重要的研究課題之一,儘管方法很多,但要得到可靠的結果是不容易的。因此,對於某一天體,應儘可能採用幾種方法分別測定它的距離,然後相互校核,才能得到可靠的結果。
我相信沒幾個人能一字不差完整的看完全文