回覆列表
  • 1 # 機器之心Pro

    背景調查公司 Onfido 研究主管 Peter Roelants 在 Medium 上發表了一篇題為《Higher-Level APIs in TensorFlow》的文章,透過例項詳細介紹瞭如何使用 TensorFlow 中的高階 API(Estimator、Experiment 和 Dataset)訓練模型。值得一提的是 Experiment 和 Dataset 可以獨立使用。這些高階 API 已被最新發布的 TensorFlow1.3 版收錄。

    TensorFlow 中有許多流行的庫,如 Keras、TFLearn 和 Sonnet,它們可以讓你輕鬆訓練模型,而無需接觸哪些低級別函式。目前,Keras API 正傾向於直接在 TensorFlow 中實現,TensorFlow 也在提供越來越多的高階構造,其中的一些已經被最新發布的 TensorFlow1.3 版收錄。

    Experiment、Estimator 和 DataSet 框架和它們的相互作用(以下將對這些元件進行說明)

    在本文中,我們使用 MNIST 作為資料集。它是一個易於使用的資料集,可以透過 TensorFlow 訪問。你可以在這個 gist 中找到完整的示例程式碼。使用這些框架的一個好處是我們不需要直接處理圖形和會話。

    Estimator

    Estimator(評估器)類代表一個模型,以及這些模型被訓練和評估的方式。我們可以這樣構建一個評估器:

    return tf.estimator.Estimator(

    model_fn=model_fn, # First-class function

    params=params, # HParams

    config=run_config # RunConfig

    )

    為了構建一個 Estimator,我們需要傳遞一個模型函式,一個引數集合以及一些配置。

    引數應該是模型超引數的集合,它可以是一個字典,但我們將在本示例中將其表示為 HParams 物件,用作 namedtuple。

    該配置指定如何執行訓練和評估,以及如何存出結果。這些配置透過 RunConfig 物件表示,該物件傳達 Estimator 需要了解的關於執行模型的環境的所有內容。

    模型函式是一個 Python 函式,它構建了給定輸入的模型(見後文)。

    模型函式

    模型函式是一個 Python 函式,它作為第一級函式傳遞給 Estimator。稍後我們就會看到,TensorFlow 也會在其他地方使用第一級函式。模型表示為函式的好處在於模型可以透過例項化函式不斷重新構建。該模型可以在訓練過程中被不同的輸入不斷建立,例如:在訓練期間執行驗證測試。

    模型函式將輸入特徵作為引數,相應標籤作為張量。它還有一種模式來標記模型是否正在訓練、評估或執行推理。模型函式的最後一個引數是超引數的集合,它們與傳遞給 Estimator 的內容相同。模型函式需要返回一個 EstimatorSpec 物件——它會定義完整的模型。

    EstimatorSpec 接受預測,損失,訓練和評估幾種操作,因此它定義了用於訓練,評估和推理的完整模型圖。由於 EstimatorSpec 採用常規 TensorFlow Operations,因此我們可以使用像 TF-Slim 這樣的框架來定義自己的模型。

    Experiment

    Experiment(實驗)類是定義如何訓練模型,並將其與 Estimator 進行整合的方式。我們可以這樣建立一個實驗類:

    experiment = tf.contrib.learn.Experiment(

    estimator=estimator, # Estimator

    train_input_fn=train_input_fn, # First-class function

    eval_input_fn=eval_input_fn, # First-class function

    train_steps=params.train_steps, # Minibatch steps

    min_eval_frequency=params.min_eval_frequency, # Eval frequency

    train_monitors=[train_input_hook], # Hooks for training

    eval_hooks=[eval_input_hook], # Hooks for evaluation

    eval_steps=None # Use evaluation feeder until its empty

    )

    Experiment 作為輸入:

    一個 Estimator(例如上面定義的那個)。

    訓練和評估鉤子(hooks)。這些鉤子可以用於監視或儲存特定內容,或在圖形和會話中進行一些操作。例如,我們將透過操作來幫助初始化資料載入器。

    不同引數解釋了訓練時間和評估時間。

    一旦我們定義了 experiment,我們就可以透過 learn_runner.run 執行它來訓練和評估模型:

    learn_runner.run(

    experiment_fn=experiment_fn, # First-class function

    run_config=run_config, # RunConfig

    schedule="train_and_evaluate", # What to run

    hparams=params # HParams

    )

    與模型函式和資料函式一樣,函式中的學習運算子將建立 experiment 作為引數。

    Dataset

    我們將使用 Dataset 類和相應的 Iterator 來表示我們的訓練和評估資料,並建立在訓練期間迭代資料的資料饋送器。在本示例中,我們將使用 TensorFlow 中可用的 MNIST 資料,並在其周圍構建一個 Dataset 包裝器。例如,我們把訓練的輸入資料表示為:

    # Define the training inputs

    def get_train_inputs(batch_size, mnist_data):

    """Return the input function to get the training data.

    Args:

    batch_size (int): Batch size of training iterator that is returned

    by the input function.

    mnist_data (Object): Object holding the loaded mnist data.

    Returns:

    (Input function, IteratorInitializerHook):

    - Function that returns (features, labels) when called.

    - Hook to initialise input iterator.

    """

    iterator_initializer_hook = IteratorInitializerHook()

    def train_inputs():

    """Returns training set as Operations.

    Returns:

    (features, labels) Operations that iterate over the dataset

    on every evaluation

    """

    with tf.name_scope("Training_data"):

    # Get Mnist data

    images = mnist_data.train.images.reshape([-1, 28, 28, 1])

    labels = mnist_data.train.labels

    # Define placeholders

    images_placeholder = tf.placeholder(

    images.dtype, images.shape)

    labels_placeholder = tf.placeholder(

    labels.dtype, labels.shape)

    # Build dataset iterator

    dataset = tf.contrib.data.Dataset.from_tensor_slices(

    (images_placeholder, labels_placeholder))

    dataset = dataset.repeat(None) # Infinite iterations

    dataset = dataset.shuffle(buffer_size=10000)

    dataset = dataset.batch(batch_size)

    iterator = dataset.make_initializable_iterator()

    next_example, next_label = iterator.get_next()

    # Set runhook to initialize iterator

    iterator_initializer_hook.iterator_initializer_func = \

    lambda sess: sess.run(

    iterator.initializer,

    feed_dict={images_placeholder: images,

    labels_placeholder: labels})

    # Return batched (features, labels)

    return next_example, next_label

    # Return function and hook

    return train_inputs, iterator_initializer_hook

    呼叫這個 get_train_inputs 會返回一個一級函式,它在 TensorFlow 圖中建立資料載入操作,以及一個 Hook 初始化迭代器。

    本示例中,我們使用的 MNIST 資料最初表示為 Numpy 陣列。我們建立一個佔位符張量來獲取資料,再使用佔位符來避免資料被複制。接下來,我們在 from_tensor_slices 的幫助下建立一個切片資料集。我們將確保該資料集執行無限長時間(experiment 可以考慮 epoch 的數量),讓資料得到清晰,並分成所需的尺寸。

    為了迭代資料,我們需要在資料集的基礎上建立迭代器。因為我們正在使用佔位符,所以我們需要在 NumPy 資料的相關會話中初始化佔位符。我們可以透過建立一個可初始化的迭代器來實現。建立圖形時,我們將建立一個自定義的 IteratorInitializerHook 物件來初始化迭代器:

    class IteratorInitializerHook(tf.train.SessionRunHook):

    """Hook to initialise data iterator after Session is created."""

    def __init__(self):

    super(IteratorInitializerHook, self).__init__()

    self.iterator_initializer_func = None

    def after_create_session(self, session, coord):

    """Initialise the iterator after the session has been created."""

    self.iterator_initializer_func(session)

    IteratorInitializerHook 繼承自 SessionRunHook。一旦建立了相關會話,這個鉤子就會呼叫 call after_create_session,並用正確的資料初始化佔位符。這個鉤子會透過 get_train_inputs 函式返回,並在建立時傳遞給 Experiment 物件。

    train_inputs 函式返回的資料載入操作是 TensorFlow 操作,每次評估時都會返回一個新的批處理。

    執行程式碼

    現在我們已經定義了所有的東西,我們可以用以下命令執行程式碼:

    python mnist_estimator.py—model_dir ./mnist_training—data_dir ./mnist_data

    如果你不傳遞引數,它將使用檔案頂部的預設標誌來確定儲存資料和模型的位置。訓練將在終端輸出全域性步長、損失、精度等資訊。除此之外,實驗和估算器框架將記錄 TensorBoard 可以顯示的某些統計資訊。如果我們執行:

    tensorboard—logdir="./mnist_training"

    我們就可以看到所有訓練統計資料,如訓練損失、評估準確性、每步時間和模型圖。

    評估精度在 TensorBoard 中的視覺化

    在 TensorFlow 中,有關 Estimator、Experiment 和 Dataset 框架的示例很少,這也是本文存在的原因。希望這篇文章可以向大家介紹這些架構工作的原理,它們應該採用哪些抽象方法,以及如何使用它們。如果你對它們很感興趣,以下是其他相關文件。

    關於 Estimator、Experiment 和 Dataset 的註釋

    論文《TensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks》:https://terrytangyuan.github.io/data/papers/tf-estimators-kdd-paper.pdf

    Using the Dataset API for TensorFlow Input Pipelines:https://www.tensorflow.org/versions/r1.3/programmers_guide/datasets

    tf.estimator.Estimator:https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator

    tf.contrib.learn.RunConfig:https://www.tensorflow.org/api_docs/python/tf/contrib/learn/RunConfig

    tf.estimator.DNNClassifier:https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier

    tf.estimator.DNNRegressor:https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor

    Creating Estimators in tf.estimator:https://www.tensorflow.org/extend/estimators

    tf.contrib.learn.Head:https://www.tensorflow.org/api_docs/python/tf/contrib/learn/Head

    本文用到的 Slim 框架:https://github.com/tensorflow/models/tree/master/slim

    完整示例

    """Script to illustrate usage of tf.estimator.Estimator in TF v1.3"""

    import tensorflow as tf

    from tensorflow.examples.tutorials.mnist import input_data as mnist_data

    from tensorflow.contrib import slim

    from tensorflow.contrib.learn import ModeKeys

    from tensorflow.contrib.learn import learn_runner

    # Show debugging output

    tf.logging.set_verbosity(tf.logging.DEBUG)

    # Set default flags for the output directories

    FLAGS = tf.app.flags.FLAGS

    tf.app.flags.DEFINE_string(

    flag_name="model_dir", default_value="./mnist_training",

    docstring="Output directory for model and training stats.")

    tf.app.flags.DEFINE_string(

    flag_name="data_dir", default_value="./mnist_data",

    docstring="Directory to download the data to.")

    # Define and run experiment ###############################

    def run_experiment(argv=None):

    # Define model parameters

    params = tf.contrib.training.HParams(

    learning_rate=0.002,

    n_classes=10,

    train_steps=5000,

    min_eval_frequency=100

    )

    # Set the run_config and the directory to save the model and stats

    run_config = tf.contrib.learn.RunConfig()

    run_config = run_config.replace(model_dir=FLAGS.model_dir)

    learn_runner.run(

    experiment_fn=experiment_fn, # First-class function

    run_config=run_config, # RunConfig

    schedule="train_and_evaluate", # What to run

    hparams=params # HParams

    )

    def experiment_fn(run_config, params):

    """Create an experiment to train and evaluate the model.

    Args:

    run_config (RunConfig): Configuration for Estimator run.

    params (HParam): Hyperparameters

    Returns:

    (Experiment) Experiment for training the mnist model.

    """

    # You can change a subset of the run_config properties as

    run_config = run_config.replace(

    save_checkpoints_steps=params.min_eval_frequency)

    # Define the mnist classifier

    estimator = get_estimator(run_config, params)

    # Setup data loaders

    mnist = mnist_data.read_data_sets(FLAGS.data_dir, one_hot=False)

    train_input_fn, train_input_hook = get_train_inputs(

    batch_size=128, mnist_data=mnist)

    eval_input_fn, eval_input_hook = get_test_inputs(

    batch_size=128, mnist_data=mnist)

    # Define the experiment

    experiment = tf.contrib.learn.Experiment(

    estimator=estimator, # Estimator

    train_input_fn=train_input_fn, # First-class function

    eval_input_fn=eval_input_fn, # First-class function

    train_steps=params.train_steps, # Minibatch steps

    min_eval_frequency=params.min_eval_frequency, # Eval frequency

    train_monitors=[train_input_hook], # Hooks for training

    eval_hooks=[eval_input_hook], # Hooks for evaluation

    eval_steps=None # Use evaluation feeder until its empty

    )

    return experiment

    # Define model ############################################

    def get_estimator(run_config, params):

    """Return the model as a Tensorflow Estimator object.

    Args:

    run_config (RunConfig): Configuration for Estimator run.

    params (HParams): hyperparameters.

    """

    return tf.estimator.Estimator(

    model_fn=model_fn, # First-class function

    params=params, # HParams

    config=run_config # RunConfig

    )

    def model_fn(features, labels, mode, params):

    """Model function used in the estimator.

    Args:

    features (Tensor): Input features to the model.

    labels (Tensor): Labels tensor for training and evaluation.

    mode (ModeKeys): Specifies if training, evaluation or prediction.

    params (HParams): hyperparameters.

    Returns:

    (EstimatorSpec): Model to be run by Estimator.

    """

    is_training = mode == ModeKeys.TRAIN

    # Define model"s architecture

    logits = architecture(features, is_training=is_training)

    predictions = tf.argmax(logits, axis=-1)

    loss = tf.losses.sparse_softmax_cross_entropy(

    labels=tf.cast(labels, tf.int32),

    logits=logits

    )

    return tf.estimator.EstimatorSpec(

    mode=mode,

    predictions=predictions,

    loss=loss,

    train_op=get_train_op_fn(loss, params),

    eval_metric_ops=get_eval_metric_ops(labels, predictions)

    )

    def get_train_op_fn(loss, params):

    """Get the training Op.

    Args:

    loss (Tensor): Scalar Tensor that represents the loss function.

    params (HParams): Hyperparameters (needs to have `learning_rate`)

    Returns:

    Training Op

    """

    return tf.contrib.layers.optimize_loss(

    loss=loss,

    global_step=tf.contrib.framework.get_global_step(),

    optimizer=tf.train.AdamOptimizer,

    learning_rate=params.learning_rate

    )

    def get_eval_metric_ops(labels, predictions):

    """Return a dict of the evaluation Ops.

    Args:

    labels (Tensor): Labels tensor for training and evaluation.

    predictions (Tensor): Predictions Tensor.

    Returns:

    Dict of metric results keyed by name.

    """

    return {

    "Accuracy": tf.metrics.accuracy(

    labels=labels,

    predictions=predictions,

    name="accuracy")

    }

    def architecture(inputs, is_training, scope="MnistConvNet"):

    """Return the output operation following the network architecture.

    Args:

    inputs (Tensor): Input Tensor

    is_training (bool): True iff in training mode

    scope (str): Name of the scope of the architecture

    Returns:

    Logits output Op for the network.

    """

    with tf.variable_scope(scope):

    with slim.arg_scope(

    [slim.conv2d, slim.fully_connected],

    weights_initializer=tf.contrib.layers.xavier_initializer()):

    net = slim.conv2d(inputs, 20, [5, 5], padding="VALID",

    scope="conv1")

    net = slim.max_pool2d(net, 2, stride=2, scope="pool2")

    net = slim.conv2d(net, 40, [5, 5], padding="VALID",

    scope="conv3")

    net = slim.max_pool2d(net, 2, stride=2, scope="pool4")

    net = tf.reshape(net, [-1, 4 * 4 * 40])

    net = slim.fully_connected(net, 256, scope="fn5")

    net = slim.dropout(net, is_training=is_training,

    scope="dropout5")

    net = slim.fully_connected(net, 256, scope="fn6")

    net = slim.dropout(net, is_training=is_training,

    scope="dropout6")

    net = slim.fully_connected(net, 10, scope="output",

    activation_fn=None)

    return net

    # Define data loaders #####################################

    class IteratorInitializerHook(tf.train.SessionRunHook):

    """Hook to initialise data iterator after Session is created."""

    def __init__(self):

    super(IteratorInitializerHook, self).__init__()

    self.iterator_initializer_func = None

    def after_create_session(self, session, coord):

    """Initialise the iterator after the session has been created."""

    self.iterator_initializer_func(session)

    # Define the training inputs

    def get_train_inputs(batch_size, mnist_data):

    """Return the input function to get the training data.

    Args:

    batch_size (int): Batch size of training iterator that is returned

    by the input function.

    mnist_data (Object): Object holding the loaded mnist data.

    Returns:

    (Input function, IteratorInitializerHook):

    - Function that returns (features, labels) when called.

    - Hook to initialise input iterator.

    """

    iterator_initializer_hook = IteratorInitializerHook()

    def train_inputs():

    """Returns training set as Operations.

    Returns:

    (features, labels) Operations that iterate over the dataset

    on every evaluation

    """

    with tf.name_scope("Training_data"):

    # Get Mnist data

    images = mnist_data.train.images.reshape([-1, 28, 28, 1])

    labels = mnist_data.train.labels

    # Define placeholders

    images_placeholder = tf.placeholder(

    images.dtype, images.shape)

    labels_placeholder = tf.placeholder(

    labels.dtype, labels.shape)

    # Build dataset iterator

    dataset = tf.contrib.data.Dataset.from_tensor_slices(

    (images_placeholder, labels_placeholder))

    dataset = dataset.repeat(None) # Infinite iterations

    dataset = dataset.shuffle(buffer_size=10000)

    dataset = dataset.batch(batch_size)

    iterator = dataset.make_initializable_iterator()

    next_example, next_label = iterator.get_next()

    # Set runhook to initialize iterator

    iterator_initializer_hook.iterator_initializer_func = \

    lambda sess: sess.run(

    iterator.initializer,

    feed_dict={images_placeholder: images,

    labels_placeholder: labels})

    # Return batched (features, labels)

    return next_example, next_label

    # Return function and hook

    return train_inputs, iterator_initializer_hook

    def get_test_inputs(batch_size, mnist_data):

    """Return the input function to get the test data.

    Args:

    batch_size (int): Batch size of training iterator that is returned

    by the input function.

    mnist_data (Object): Object holding the loaded mnist data.

    Returns:

    (Input function, IteratorInitializerHook):

    - Function that returns (features, labels) when called.

    - Hook to initialise input iterator.

    """

    iterator_initializer_hook = IteratorInitializerHook()

    def test_inputs():

    """Returns training set as Operations.

    Returns:

    (features, labels) Operations that iterate over the dataset

    on every evaluation

    """

    with tf.name_scope("Test_data"):

    # Get Mnist data

    images = mnist_data.test.images.reshape([-1, 28, 28, 1])

    labels = mnist_data.test.labels

    # Define placeholders

    images_placeholder = tf.placeholder(

    images.dtype, images.shape)

    labels_placeholder = tf.placeholder(

    labels.dtype, labels.shape)

    # Build dataset iterator

    dataset = tf.contrib.data.Dataset.from_tensor_slices(

    (images_placeholder, labels_placeholder))

    dataset = dataset.batch(batch_size)

    iterator = dataset.make_initializable_iterator()

    next_example, next_label = iterator.get_next()

    # Set runhook to initialize iterator

    iterator_initializer_hook.iterator_initializer_func = \

    lambda sess: sess.run(

    iterator.initializer,

    feed_dict={images_placeholder: images,

    labels_placeholder: labels})

    return next_example, next_label

    # Return function and hook

    return test_inputs, iterator_initializer_hook

    # Run script ##############################################

    if __name__ == "__main__":

    tf.app.run(

    main=run_experiment

    )

  • 中秋節和大豐收的關聯?
  • 為何周星馳和劉德華張國榮合作卻只拿了亞軍?