回覆列表
  • 1 # 林根數學

    數學來說,就是:概念→性質→應用。

    只說一下概念的理解:

    就說這個函式的概念,非常近代,非常抽象!關鍵是不會理解會影響以後的“即時定義”考題!那麼如何理解才好呢? 函式的近代定義: 設A,B都是非空的數的集合,f:x→y是從A到B的一個對應法則,那麼從A到B的對映f:A→B就叫做函式,記作y=f(x),其中x∈A,y∈B,原象集合A叫做函式f(x)的定義域,象集合C叫做函式f(x)的值域,顯然有C是B的子集。 當然是應用身邊的例子最好理解: 每次考試老師的記分冊有三欄:A:學號;B:姓名;C:成績,那麼,請問:A→C,A→B,B→C,有沒有函式關係?為什麼? 答出這個問題,函式的概念就是真正理解了!如果只是拿初中學過的y=2x來理解,那你就完了!不過理解過狄利克雷函式(高考有考)的也能理解函式的本性。

  • 2 # 我是小成老師

    學習策略是指學習者為了提高學習的效果和效率,有目的、有意識地制定的有關學習過程的複雜方案。

    “學會如何學習”的實質就是學會在適當的條件下使用適當策略。

    學習策略由兩種相互作用的成分組成:一種是基本策略,直接作用於學生的認知活動;另一種是輔助性策略,用來維持合適的學習心理狀態,如情緒調控策略。

    現把邁克卡等人提出的學習策略結構用框圖表示如下:

  • 中秋節和大豐收的關聯?
  • 在路邊蜂農處買的蜂蜜,上面白白的一層是什麼啊,像奶油一樣,是不是假的啊?