弦長公式,是指直線與圓錐曲線相交所得弦長d的公式。
PS:圓錐曲線, 是數學、幾何學中透過平切圓錐(嚴格為一個正圓錐面和一個平面完整相切)得到的一些曲線,如:橢圓,雙曲線,拋物線等。直線與圓錐曲線的位置關係是平面解析幾何的重要內容之一,也是高考的熱點,反覆考查。考查的主要內容包括:直線與圓錐曲線公共點的個數問題;弦的相關問題(弦長問題、中點弦問題、垂直問題、定比分點問題等);對稱問題;最值問題、軌跡問題和圓錐曲線的標準方程問題等。
證明
若直線l:y=kx+b,與圓錐曲線相交與A、B兩點,A(x1,y1)B(x2,y2)
弦長|AB|=√[(x1-x2)^2+(y1-y2)^2]
=√[(x1-x2)^2+(kx1-kx2)^2]
=√(1+k^2)|x1-x2|
=√(1+k^2)√[(x1+x2)^2-4x1x2]
知道弧長半徑,求弦長。
已知弧長L=19.5米,半徑R=14.2米。設該弧所對的園心角為φ,弦長為C,則φ=L/R(弧度),φ/2=L/2R, C=2Rsin(φ/2).
∴C=2*14.2sin(19.5/28.4)=28.4sin[(19.5/28.4 )(180°/π)]
=28.4sin39.34°=28.4*0.6339=18.00276米≈18米
弦長公式,是指直線與圓錐曲線相交所得弦長d的公式。
PS:圓錐曲線, 是數學、幾何學中透過平切圓錐(嚴格為一個正圓錐面和一個平面完整相切)得到的一些曲線,如:橢圓,雙曲線,拋物線等。直線與圓錐曲線的位置關係是平面解析幾何的重要內容之一,也是高考的熱點,反覆考查。考查的主要內容包括:直線與圓錐曲線公共點的個數問題;弦的相關問題(弦長問題、中點弦問題、垂直問題、定比分點問題等);對稱問題;最值問題、軌跡問題和圓錐曲線的標準方程問題等。
證明
若直線l:y=kx+b,與圓錐曲線相交與A、B兩點,A(x1,y1)B(x2,y2)
弦長|AB|=√[(x1-x2)^2+(y1-y2)^2]
=√[(x1-x2)^2+(kx1-kx2)^2]
=√(1+k^2)|x1-x2|
=√(1+k^2)√[(x1+x2)^2-4x1x2]
知道弧長半徑,求弦長。
已知弧長L=19.5米,半徑R=14.2米。設該弧所對的園心角為φ,弦長為C,則φ=L/R(弧度),φ/2=L/2R, C=2Rsin(φ/2).
∴C=2*14.2sin(19.5/28.4)=28.4sin[(19.5/28.4 )(180°/π)]
=28.4sin39.34°=28.4*0.6339=18.00276米≈18米