回覆列表
  • 1 # 使用者1042898638258

    α、β、γ用a、b、c表示:

    3個方向餘弦滿足:cosa^2+cosb^2+cosc^2=1

    即:sina^2+sinb^2+sinc^2=2

    1/sina^2+4/sinb^2+9/sinc^2

    =(1/2)*(2/sina^2)+2*2/sinb^2+(9/2)*(2/sinc^2)

    =(1/2)*(1+sinb^2/sina^2+sinc^2/sina^2)+2*(sina^2/sinb^2+1+sinc^2/sinb^2)

    +(9/2)*(sina^2/sinc^2+sinb^2/sinc^2+1)

    =(1/2+2+9/2)+sinb^2/(2sina^2)+sinc^2/(2sina^2)

    +2sina^2/sinb^2+2sinc^2/sinb^2+9sina^2/(2sinc^2)+9sinb^2/(2sinc^2)

    ≥7+2(sinb*√2sina/(√2sina*sinb))+2(3sinc*sina/(√2sina*√2sinc))

    +2(√2sinc*3sinb/(sinb*√2sinc))=18

    等號成立的條件:sinb^2=2sina^2,sinc^2=3sina^2,2sinc^2=3sinb^2

    但這個等號成立的條件比較苛刻,還要考慮sina^2+sinb^2+sinc^2=2的條件

    即:6sina^2=2,即:sina^2=1/3,sinb^2=2/3,sinc^2=1

    即:sina=√3/3,sinb=√6/3,sinc=1

    此時1/sina^2+4/sinb^2+9/sinc^2取得最小值:18

  • 中秋節和大豐收的關聯?
  • 拔河比賽有什麼竅門?