用途:
透射電子顯微鏡在材料科學、生物學上應用較多。由於電子易散射或被物體吸收,故穿透力低,樣品的密度、厚度等都會影響到最後的成像質量,必須製備更薄的超薄切片,通常為50~100nm。
由於電子的德布羅意波長非常短,透射電子顯微鏡的解析度比光學顯微鏡高的很多,可以達到0.1~0.2nm,放大倍數為幾萬~百萬倍。因此,使用透射電子顯微鏡可以用於觀察樣品的精細結構,甚至可以用於觀察僅僅一列原子的結構,比光學顯微鏡所能夠觀察到的最小的結構小數萬倍。
TEM在中和物理學和生物學相關的許多科學領域都是重要的分析方法,如癌症研究、病毒學、材料科學、以及奈米技術、半導體研究等等。
擴充套件資料:
透射電子顯微鏡原理
由電子槍發射出來的電子束,在真空通道中沿著鏡體光軸穿越聚光鏡,透過聚光鏡將之會聚成一束尖細、明亮而又均勻的光斑,照射在樣品室內的樣品上;透過樣品後的電子束攜帶有樣品內部的結構資訊,樣品內緻密處透過的電子量少,稀疏處透過的電子量多。
經過物鏡的會聚調焦和初級放大後,電子束進入下級的中間透鏡和第1、第2投影鏡進行綜合放大成像,最終被放大了的電子影像投射在觀察室內的熒光屏板上;熒光屏將電子影像轉化為可見光影像以供使用者觀察。
用途:
透射電子顯微鏡在材料科學、生物學上應用較多。由於電子易散射或被物體吸收,故穿透力低,樣品的密度、厚度等都會影響到最後的成像質量,必須製備更薄的超薄切片,通常為50~100nm。
由於電子的德布羅意波長非常短,透射電子顯微鏡的解析度比光學顯微鏡高的很多,可以達到0.1~0.2nm,放大倍數為幾萬~百萬倍。因此,使用透射電子顯微鏡可以用於觀察樣品的精細結構,甚至可以用於觀察僅僅一列原子的結構,比光學顯微鏡所能夠觀察到的最小的結構小數萬倍。
TEM在中和物理學和生物學相關的許多科學領域都是重要的分析方法,如癌症研究、病毒學、材料科學、以及奈米技術、半導體研究等等。
擴充套件資料:
透射電子顯微鏡原理
由電子槍發射出來的電子束,在真空通道中沿著鏡體光軸穿越聚光鏡,透過聚光鏡將之會聚成一束尖細、明亮而又均勻的光斑,照射在樣品室內的樣品上;透過樣品後的電子束攜帶有樣品內部的結構資訊,樣品內緻密處透過的電子量少,稀疏處透過的電子量多。
經過物鏡的會聚調焦和初級放大後,電子束進入下級的中間透鏡和第1、第2投影鏡進行綜合放大成像,最終被放大了的電子影像投射在觀察室內的熒光屏板上;熒光屏將電子影像轉化為可見光影像以供使用者觀察。