(x+sinx)/(1+cosx)在 [0,π/2]上的定積分是π/2。
∫(x+sinx)/(1+cosx)dx
=∫[x+2sin(x/2)cos(x/2)]/[2cos²(x/2)]dx
=∫[x/(2cos²(x/2))]dx+∫[2sin(x/2)cos(x/2)]/[2cos²(x/2)]dx
=∫xdtan(x/2)+∫tan(x/2)dx
=xtan(x/2)-∫tan(x/2)dx+∫tan(x/2)dx
=xtan(x/2)+C
所以原定積分
=xtan(x/2)|(0,π/2)
=π/2
擴充套件資料:
定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有!
一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
(x+sinx)/(1+cosx)在 [0,π/2]上的定積分是π/2。
∫(x+sinx)/(1+cosx)dx
=∫[x+2sin(x/2)cos(x/2)]/[2cos²(x/2)]dx
=∫[x/(2cos²(x/2))]dx+∫[2sin(x/2)cos(x/2)]/[2cos²(x/2)]dx
=∫xdtan(x/2)+∫tan(x/2)dx
=xtan(x/2)-∫tan(x/2)dx+∫tan(x/2)dx
=xtan(x/2)+C
所以原定積分
=xtan(x/2)|(0,π/2)
=π/2
擴充套件資料:
定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有!
一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c