回覆列表
-
1 # 每日欣品
-
2 # labih
n!=1×2×3×...×n。階乘亦可以遞迴方式定義:0!=1,n!=(n-1)!×n。
亦即n!=1×2×3×...×n。階乘亦可以遞迴方式定義:0!=1,n!=(n-1)!×n。
雙階乘用“m!!”表示。
當 m 是自然數時,表示不超過 m 且與 m 有相同奇偶性的所有正整數的乘積。如:
當 m 是負奇數時,表示絕對值小於它的絕對值的所有負奇數的絕對值積的倒數。
當 m 是負偶數時,m!!不存在。
任何大於等於1 的自然數n 階乘表示方法:
階乘的公式是:n!=n*(n-1)!
階乘亦可以遞迴方式定義:0!=1,n!=(n-1)!×n。
階乘的表示方法
在表達階乘時,就使用“!”來表示。如x的階乘,就表示為x!
他的原理就是反推,如,舉例,求10的階乘=10*9的階乘(以後用!表示階乘)那麼9!=?,9!=9*8!,8!=8*7!,7!=7*6!,6!=6*5!,5!=5*4!,4!=4*3!,
3!=3*2!,2!=2*1!,1的階乘是多少呢?是1 1!=1*1,數學家規定,0!=1,所以0!=1!然後在往前推算,公式為n!(n!為當前數所求的階乘)=n(當前數)*(n-1)!(比他少一的一個數N-1的階乘把公式列出來像後推,只有1的!為1,所以要從1開始,要知道3!要知道2!就要知道1!但必須從1!開始推算所以要像後推,如果遍程式演算法可以此公式用一個函式解決,並且巢狀呼叫次函式,,)把數帶入公式為, 1!=1*1 2!=2*1(1!) 3!=3*2(2!) 4=4*6(3!),如果要是程式設計,怎麼解決公式問題呢
擴充套件資料;階乘是基斯頓·卡曼(Christian Kramp,1760~1826)於 1808 年發明的運算子號,是數學術語。
一個正整數的階乘(factorial)是所有小於及等於該數的正整數的積,並且0的階乘為1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。