連續(Continuity)的概念最早出現於數學分析,後被推廣到點集拓撲中。
假設f:X->Y是一個拓撲空間之間的對映,如果f滿足下麵條件,就稱f是連續的:對任何Y上的開集U, U在f下的原像f^(-1)(U)必是X上的開集。
若只考慮實變函式,那麼要是對於一定區間上的任意一點,函式本身有定義,且其左極限與右極限均存在且相等,則稱函式在這一區間上是連續的。
分為左連續和右連續。在區間每一點都連續的函式,叫做函式在該區間的連續函式。
離散數學(Discrete mathematics)是研究離散量的結構及其相互關係的數學學科,是現代數學的一個重要分支。離散的含義是指不同的連線在一起的元素,主要是研究基於離散量的結構和相互間的關係,其物件一般是有限個或可數個元素。離散數學在各學科領域,特別在計算機科學與技術領域有著廣泛的應用,同時離散數學也是計算機專業的許多專業課程,如程式設計語言、資料結構、作業系統、編譯技術、人工智慧、資料庫、演算法設計與分析、理論計算機科學基礎等必不可少的先行課程。透過離散數學的學習,不但可以掌握處理離散結構的描述工具和方法,為後續課程的學習創造條件,而且可以提高抽象思維和嚴格的邏輯推理能力,為將來參與創新性的研究和開發工作打下堅實的基礎。
二者的區別:
離散數學是相對連續數學而言的,主要以研究物件是否具有連續性為區分點。從這個角度來說,通常的微積分就算是連續數學。但離散數學這個詞和高等數學一樣,現在更多的是用來指代大學非數學專業的一門數學課程名稱,它的內容主要涉及數論、圖論、最最佳化、群論等問題,通常是計算機類專業的必修課程。
連續數學是相對非隨機數學而言的,主要以研究物件是否具有隨機性為區分點。隨機性是不確定性的一種,所以還有個更廣的分類叫確定性數學與不確定性數學,後者還包括一種稱為模糊性的不確定性。涉及隨機性的都可以歸到隨機數學一類,比如機率論、隨機過程、隨機微分方程等,其它如微積分、線性代數之類就都算是非隨機數學了。
連續(Continuity)的概念最早出現於數學分析,後被推廣到點集拓撲中。
假設f:X->Y是一個拓撲空間之間的對映,如果f滿足下麵條件,就稱f是連續的:對任何Y上的開集U, U在f下的原像f^(-1)(U)必是X上的開集。
若只考慮實變函式,那麼要是對於一定區間上的任意一點,函式本身有定義,且其左極限與右極限均存在且相等,則稱函式在這一區間上是連續的。
分為左連續和右連續。在區間每一點都連續的函式,叫做函式在該區間的連續函式。
離散數學(Discrete mathematics)是研究離散量的結構及其相互關係的數學學科,是現代數學的一個重要分支。離散的含義是指不同的連線在一起的元素,主要是研究基於離散量的結構和相互間的關係,其物件一般是有限個或可數個元素。離散數學在各學科領域,特別在計算機科學與技術領域有著廣泛的應用,同時離散數學也是計算機專業的許多專業課程,如程式設計語言、資料結構、作業系統、編譯技術、人工智慧、資料庫、演算法設計與分析、理論計算機科學基礎等必不可少的先行課程。透過離散數學的學習,不但可以掌握處理離散結構的描述工具和方法,為後續課程的學習創造條件,而且可以提高抽象思維和嚴格的邏輯推理能力,為將來參與創新性的研究和開發工作打下堅實的基礎。
二者的區別:
離散數學是相對連續數學而言的,主要以研究物件是否具有連續性為區分點。從這個角度來說,通常的微積分就算是連續數學。但離散數學這個詞和高等數學一樣,現在更多的是用來指代大學非數學專業的一門數學課程名稱,它的內容主要涉及數論、圖論、最最佳化、群論等問題,通常是計算機類專業的必修課程。
連續數學是相對非隨機數學而言的,主要以研究物件是否具有隨機性為區分點。隨機性是不確定性的一種,所以還有個更廣的分類叫確定性數學與不確定性數學,後者還包括一種稱為模糊性的不確定性。涉及隨機性的都可以歸到隨機數學一類,比如機率論、隨機過程、隨機微分方程等,其它如微積分、線性代數之類就都算是非隨機數學了。