1、鋼的熱脆性:
金屬材料在高溫短載作用下,金屬材料的塑性增加;但在高溫長時載荷作用下的金屬材料冷卻後,其塑性會顯著降低,缺口敏感性增加,往往呈現脆性斷裂現象。金屬材料的這種特性稱為熱脆性。
2、鋼的冷脆性:
隨著溫度的降低,大多數鋼材的強度有所增加,而韌性下降。金屬材料在低溫下呈現的脆性稱為冷脆性。材料由延性破壞轉變到脆性破壞的上限溫度稱為韌脆轉變溫度。為防止發生低溫脆性破壞,鋼材的最低允許工作溫度就應高於韌脆轉變溫度的上限。
擴充套件資料:
基本性質:
1、對於珠光體鋼,當由於熱脆性的產生而使衝擊值降低時,其塑性和強度不發生變化。只是在個別情況下伸長率和7a64e59b9ee7ad9431333431353261斷面收縮率同時減低。對於奧氏體鋼,當由於熱脆性的產生而使衝擊值降低時,往往塑性也同時下降。
電站用鋼處於高溫、應力狀態下工作,固溶體中碳化物、氮化物及金屬間化合物,在熱脆性敏感的鋼中加速析出,從而加速熱脆性發展。所以,有些鋼經過時效處理後仍保持相當高的衝擊值,而執行後出現熱脆性的時間卻大大提前,這就是因為應力和塑性變形加速熱脆性發展的緣故。
珠光體鋼產生熱脆性的溫度範圍是400~500℃,碳素鋼只有存在塑性應變的前提下才出現熱脆性,Mn和Cr促使熱脆性發展;Cu≤0.5%沒有顯著影響,Cu>0.5%加速熱脆性發展;W、V等屬於減緩熱脆性發展的元素。退火鋼熱脆性發展速度快;淬火併高溫回火鋼熱脆性發展速度慢。
2、奧氏體鋼的熱脆性:18—8不鏽鋼在500~850℃區間保溫後,再在常溫下試驗,可發現其脆性的發展。隨著鋼中含碳量增高,脆性也加大。當回火溫度為900℃左右時,脆性就更加嚴重。
延長回火保溫時間,將有Cr的碳化物沿晶界析出,同樣會引起脆化。在已脆化鋼的組織中,已出現網狀分佈的馬氏體組織。這種組織的出現,正是由於Cr碳化物的析出,使固溶狀態的Cr區域性貧化,於是便生成馬氏體組織。
在含有Ti和Nb的鋼中,在700℃和900℃回火後,均出現脆性。700℃回火脆性的發展是由於Cr碳化物析出的結果。900℃回火後,有Ti和Nb的碳化物析出,脆性發展較慢。含3%Mo以下的鋼,在800~900℃回火後,將促使脆性發展。
1、鋼的熱脆性:
金屬材料在高溫短載作用下,金屬材料的塑性增加;但在高溫長時載荷作用下的金屬材料冷卻後,其塑性會顯著降低,缺口敏感性增加,往往呈現脆性斷裂現象。金屬材料的這種特性稱為熱脆性。
2、鋼的冷脆性:
隨著溫度的降低,大多數鋼材的強度有所增加,而韌性下降。金屬材料在低溫下呈現的脆性稱為冷脆性。材料由延性破壞轉變到脆性破壞的上限溫度稱為韌脆轉變溫度。為防止發生低溫脆性破壞,鋼材的最低允許工作溫度就應高於韌脆轉變溫度的上限。
擴充套件資料:
基本性質:
1、對於珠光體鋼,當由於熱脆性的產生而使衝擊值降低時,其塑性和強度不發生變化。只是在個別情況下伸長率和7a64e59b9ee7ad9431333431353261斷面收縮率同時減低。對於奧氏體鋼,當由於熱脆性的產生而使衝擊值降低時,往往塑性也同時下降。
電站用鋼處於高溫、應力狀態下工作,固溶體中碳化物、氮化物及金屬間化合物,在熱脆性敏感的鋼中加速析出,從而加速熱脆性發展。所以,有些鋼經過時效處理後仍保持相當高的衝擊值,而執行後出現熱脆性的時間卻大大提前,這就是因為應力和塑性變形加速熱脆性發展的緣故。
珠光體鋼產生熱脆性的溫度範圍是400~500℃,碳素鋼只有存在塑性應變的前提下才出現熱脆性,Mn和Cr促使熱脆性發展;Cu≤0.5%沒有顯著影響,Cu>0.5%加速熱脆性發展;W、V等屬於減緩熱脆性發展的元素。退火鋼熱脆性發展速度快;淬火併高溫回火鋼熱脆性發展速度慢。
2、奧氏體鋼的熱脆性:18—8不鏽鋼在500~850℃區間保溫後,再在常溫下試驗,可發現其脆性的發展。隨著鋼中含碳量增高,脆性也加大。當回火溫度為900℃左右時,脆性就更加嚴重。
延長回火保溫時間,將有Cr的碳化物沿晶界析出,同樣會引起脆化。在已脆化鋼的組織中,已出現網狀分佈的馬氏體組織。這種組織的出現,正是由於Cr碳化物的析出,使固溶狀態的Cr區域性貧化,於是便生成馬氏體組織。
在含有Ti和Nb的鋼中,在700℃和900℃回火後,均出現脆性。700℃回火脆性的發展是由於Cr碳化物析出的結果。900℃回火後,有Ti和Nb的碳化物析出,脆性發展較慢。含3%Mo以下的鋼,在800~900℃回火後,將促使脆性發展。