溫差電池的原理是塞貝克效應。
塞貝克效應,又稱作第一熱電效應,它是指由於溫差而產生的熱電現象。
在兩種金屬A和B組成的迴路中,如果使兩個接觸點的溫度不同,則在迴路中將出現電流,稱為熱電流。
塞貝克效應的實質在於兩種金屬接觸時會產生接觸電勢差,該電勢差取決於金屬的電子逸出功和有效電子密度這兩個基本因素。
半導體的溫差電動勢較大,可用作溫差發電器。
原理:
1821年,賽貝克發現,把兩種不同的金屬導體接成閉合電路時,如果把它的兩個接點分別置於溫度不同的兩個環境中,則電路中就會有電流產生。這一現象稱為塞貝克效應,這樣的電路叫做溫差電偶,這種情況下產生電流的電動勢叫做溫差電動勢。例如,鐵與銅的冷接頭為1℃,熱接頭處為100℃,則有5.2mV的溫差電動勢產生。
由於不同的金屬材料所具有的自由電子密度不同,當兩種不同的金屬導體接觸時,在接觸面上就會發生電子擴散。電子的擴散速率與兩導體的電子密度有關並和接觸區的溫度成正比。
設導體A和B的自由電子密度為NA和NB,且有NA>NB,電子擴散的結果使導體A失去電子而帶正電,導體B則因獲得電子而帶負電,在接觸面形成電場。這個電場阻礙了電子繼續擴散,達到動態平衡時,在接觸區形成一個穩定的電位差,即接觸電勢。
溫差電池的原理是塞貝克效應。
塞貝克效應,又稱作第一熱電效應,它是指由於溫差而產生的熱電現象。
在兩種金屬A和B組成的迴路中,如果使兩個接觸點的溫度不同,則在迴路中將出現電流,稱為熱電流。
塞貝克效應的實質在於兩種金屬接觸時會產生接觸電勢差,該電勢差取決於金屬的電子逸出功和有效電子密度這兩個基本因素。
半導體的溫差電動勢較大,可用作溫差發電器。
原理:
1821年,賽貝克發現,把兩種不同的金屬導體接成閉合電路時,如果把它的兩個接點分別置於溫度不同的兩個環境中,則電路中就會有電流產生。這一現象稱為塞貝克效應,這樣的電路叫做溫差電偶,這種情況下產生電流的電動勢叫做溫差電動勢。例如,鐵與銅的冷接頭為1℃,熱接頭處為100℃,則有5.2mV的溫差電動勢產生。
由於不同的金屬材料所具有的自由電子密度不同,當兩種不同的金屬導體接觸時,在接觸面上就會發生電子擴散。電子的擴散速率與兩導體的電子密度有關並和接觸區的溫度成正比。
設導體A和B的自由電子密度為NA和NB,且有NA>NB,電子擴散的結果使導體A失去電子而帶正電,導體B則因獲得電子而帶負電,在接觸面形成電場。這個電場阻礙了電子繼續擴散,達到動態平衡時,在接觸區形成一個穩定的電位差,即接觸電勢。