回覆列表
  • 1 # 使用者5112239825434

    由於“編碼總位數為8”的限制,真值-128無法用原碼、反碼來表示,似乎不能用上述規則來求解補碼,但實際上是可行的——只要不管它的最高位即可,操作辦法如下:將128化為二進位制為:1 0000000,最高位為1,可以只對捨去最高位後剩餘的7位進行處理即可,首先取反得:1111111,加1得:1 0000000,最高位有進位需丟棄,即得:0000000,加上符號位就得補碼:1 0000000。又如,當編碼總位數為4時,真值X=+0.101的原碼、反碼、補碼均為:0 101。真值X=-0.101的原碼、反碼、補碼依次為:1 101、1 010、1 011。同理,特例,-1的補碼為:1 000。在定點小數中,小數點隱含在第一位編碼和第二位編碼之間定點小數,是指小數點準確固定在資料某個位置上的小數,從實用角度看,都把小數點固定在最高資料位的左邊,小數點前邊再設一位符號位。按此規則,任何一個小數都可以被寫成 :N = NS . N-1 N-2 … N-M如果在計算機中用m+1個二進位制位表示上述小數,則可以用最高(最左)一個二進位制位表示符號(如用0表示正號,則1就表示負號),而用後面的m個二進位制位表示該小數的數值。小數點不用明確表示出來,因為它總是固定在符號位與最高數值位之間,已成定論。定點小數的取值範圍很小,對用m+1個二進位制位的小數來說,其值的範圍為:|N| ≤ 1-2^(-m)  即小於1的純小數,這對使用者算題是十分不方便的,因為在算題前,必須把要用的數,透過合適的 "比例因子"化成絕對值小於1的小數,並保證運算的中間和最終結果的絕對值也都小於1,在輸出真正結果時,還要把計算的結果按相應比例加以擴大。定點小數表示法,主要用在早期的計算機中,它最節省硬體。隨著計算機硬體成本的大幅度降低,現代的通用計算機都被設計成能處理與計算多種型別數值的計算機。我們將主要透過定點小數討論數值資料的不同編碼方案,而且,定點小數也被用來表示浮點數的尾數部分。

  • 中秋節和大豐收的關聯?
  • 愛普生LQ-610K色帶怎麼裝,針式印表機色帶安裝?