首頁>Club>
5
回覆列表
  • 1 # 風吹女華123

    初中數學考試中,經常出現數列的找規律題,本文就此類題的解題方法進行探索:

    一、基本方法——看增幅

    (一)如增幅相等(此實為等差數列):對每個數和它的前一個數進行比較,如增幅相等,則第n個數可以表示為:a+(n-1)b,其中a為數列的第一位數,b為增幅,(n-1)b為第一位數到第n位的總增幅.然後再簡化代數式a+(n-1)b.

    例:4、10、16、22、28……,求第n位數.

    分析:第二位數起,每位數都比前一位數增加6,增幅相都是6,所以,第n位數是:4+(n-1)×6=6n-2

    (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅為等差數列).如增幅分別為3、5、7、9,說明增幅以同等幅度增加.此種數列第n位的數也有一種通用求法.

    基本思路是:1、求出數列的第n-1位到第n位的增幅;

    2、求出第1位到第第n位的總增幅;

    3、數列的第1位數加上總增幅即是第n位數.

    舉例說明:2、5、10、17……,求第n位數.

    分析:數列的增幅分別為:3、5、7,增幅以同等幅度增加.那麼,數列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,總增幅為:

    [3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1

    所以,第n位數是:2+ n2-1= n2+1

    此解法雖然較煩,但是此類題的通用解法,當然此題也可用其它技巧,或用分析觀察湊的方法求出,方法就簡單的多了.

    (三)增幅不相等,但是,增幅同比增加,即增幅為等比數列,如:2、3、5、9,17增幅為1、2、4、8.

    (三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此類題大概沒有通用解法,只用分析觀察的方法,但是,此類題包括第二類的題,如用分析觀察法,也有一些技巧.

  • 中秋節和大豐收的關聯?
  • 房子犯獨陰煞怎麼化解?