正方體的表面積公式
正方體表面積公式:S=6×(稜長×稜長)字母:S=6a²
拓展資料
用六個完全相同的正方形圍成的立體圖形叫正方體。側面和底面均為正方形的直平行六面體叫正方體,即稜長都相等的六面體,又稱“立方體”、“正六面體”。正方體是特殊的長方體。正方體的體積(或叫做正方體的容積)=稜長×稜長×稜長;設一個正方體的稜長為a,則它的體積為:V=a×a×a或等於a³。
特徵
1〕正方體有8個頂點;
2〕正方體有12條稜,且每條稜長度相等。
3)正方體相鄰的兩條稜互相垂直。
4)正方體的體對角線:
表面積
因為6個面全部相等,所以正方體的表面積=一個面的面積×6=稜長×稜長×6
設一個正方體的稜長為a,則它的表面積S:
S=6(a²)
體積
正方體的體積(或叫做正方體的容積)=稜長×稜長×稜長;設一個正方體的稜長為a,則它的體積為:
V=a×a×a或=a³;
先取上底面的面對角線,計算,得到,根號2倍稜長
這根面對角線和它相交的稜,就是垂直於上底面的稜,
又可以組成一個直角三角形,而這個直角三角形的斜邊就是體對角線,
根據勾股定理,得到,體對角線=根號3倍稜長。
正方體屬於稜柱的一種,稜柱的體積公式同樣適用
(要正確區分體對角線和麵對角線,面對角線是平面幾何中的概念而體對角線是立體幾何中的概念)
也可以用正方體的體積=底面積×高計算
同時,正方體的體對角線也等於:體對角線的平方=長的平方+寬的平方+高的平方
推導過程:因為正方體是特殊的長方體
正方體的表面積公式
正方體表面積公式:S=6×(稜長×稜長)字母:S=6a²
拓展資料
用六個完全相同的正方形圍成的立體圖形叫正方體。側面和底面均為正方形的直平行六面體叫正方體,即稜長都相等的六面體,又稱“立方體”、“正六面體”。正方體是特殊的長方體。正方體的體積(或叫做正方體的容積)=稜長×稜長×稜長;設一個正方體的稜長為a,則它的體積為:V=a×a×a或等於a³。
特徵
1〕正方體有8個頂點;
2〕正方體有12條稜,且每條稜長度相等。
3)正方體相鄰的兩條稜互相垂直。
4)正方體的體對角線:
表面積
因為6個面全部相等,所以正方體的表面積=一個面的面積×6=稜長×稜長×6
設一個正方體的稜長為a,則它的表面積S:
S=6(a²)
體積
正方體的體積(或叫做正方體的容積)=稜長×稜長×稜長;設一個正方體的稜長為a,則它的體積為:
V=a×a×a或=a³;
先取上底面的面對角線,計算,得到,根號2倍稜長
這根面對角線和它相交的稜,就是垂直於上底面的稜,
又可以組成一個直角三角形,而這個直角三角形的斜邊就是體對角線,
根據勾股定理,得到,體對角線=根號3倍稜長。
正方體屬於稜柱的一種,稜柱的體積公式同樣適用
(要正確區分體對角線和麵對角線,面對角線是平面幾何中的概念而體對角線是立體幾何中的概念)
也可以用正方體的體積=底面積×高計算
同時,正方體的體對角線也等於:體對角線的平方=長的平方+寬的平方+高的平方
推導過程:因為正方體是特殊的長方體