光合作用,通常是指綠色植物(包括藻類)吸收光能,把二氧化碳和水合成富能有機物,同時釋放氧氣的過程。其主要包括光反應、暗反應兩個階段,涉及光吸收、電子傳遞、光合磷酸化、碳同化等重要反應步驟,對實現自然界的能量轉換、維持大氣的碳-氧平衡具有重要意義。
定義:綠色植物利用太陽的光能,同化二氧化碳(CO2)和水(H2O)製造有機物質並釋放氧氣的過程,稱為光合作用。光合作用所產生的有機物主要是碳水化合物,並釋放出能量。
發展:
最早的光合作用:
1990年,一種紅藻化石在加拿大北極地區被發現,這種紅藻是地球上已知的第一種有性繁殖物種,也被認為是已發現的現代動植物最古老祖先。對紅藻化石的年齡此前沒有形成統一看法,多數觀點認為它們生活在距今約12億年前。
為了確定這種紅藻化石的年齡,研究人員專門到加拿大巴芬島收集包含這種紅藻化石的黑頁岩並用錸鋨同位素測年法分析,認為紅藻化石有10.47億年的歷史。
在確認紅藻化石年齡基礎上,研究人員用一種名為“分子鐘”的數學模型來計算基於基因突變率的生物進化事件。他們的結論是,約12.5億年前,真核生物開始進化出能進行光合作用的葉綠素。
意義:
將太陽能變為化學能
植物在同化無機碳化物的同時,把太陽能轉變為化學能,儲存在所形成的有機化合物中。每年光合作用所同化的太陽能約為人類所需能量的10倍。有機物中所儲存的化學能,除了供植物本身和全部異養生物之用外,更重要的是可供人類營養和活動的能量來源。因此可以說,光合作用提供今天的主要能源。綠色植物是一個巨型的能量轉換站。
把無機物變成有機物
植物透過光合作用製造有機物的規模是非常巨大的。據估計,植物每年可吸收CO2約合成約的有機物。地球上的自養植物同化的碳素,40%是由浮游植物同化的,餘下60%是由陸生植物同化的。人類所需的糧食、油料、纖維、木材、糖、水果等,無不來自光合作用,沒有光合作用,人類就沒有食物和各種生活用品。換句話說,沒有光合作用就沒有人類的生存和發展。
維持大氣的碳-氧平衡
大氣之所以能經常保持21%的氧含量,主要依賴於光合作用(光合作用過程中放氧量約)。光合作用一方面為有氧呼吸提供了條件,另一方面,的積累,逐漸形成了大氣表層的臭氧(O3)層。臭氧層能吸收太Sunny中對生物體有害的強烈的紫外輻射。植物的光合作用雖然能清除大氣中大量的CO2,但大氣中CO2的濃度仍然在增加,這主要是由於城市化及工業化所致。
反應過程:
光合作用的過程是一個比較複雜的問題,從表面上看,光合作用的總反應式似乎是一個簡單的氧化還原過程,但實質上包括一系列的光化學步驟和物質轉變問題。根據現代的資料,整個光合作用大致可分為下列3大步驟:①原初反應,包括光能的吸收、傳遞和轉換;②電子傳遞和光合磷酸化,形成活躍化學能(ATP和NADPH);③碳同化,把活躍的化學能轉變為穩定的化學能(固定CO2,形成糖類)。在介紹光合作用反應過程前,對光合作用過程中涉及的光合色素及光系統進行一定的瞭解是必要的。
光合作用,通常是指綠色植物(包括藻類)吸收光能,把二氧化碳和水合成富能有機物,同時釋放氧氣的過程。其主要包括光反應、暗反應兩個階段,涉及光吸收、電子傳遞、光合磷酸化、碳同化等重要反應步驟,對實現自然界的能量轉換、維持大氣的碳-氧平衡具有重要意義。
定義:綠色植物利用太陽的光能,同化二氧化碳(CO2)和水(H2O)製造有機物質並釋放氧氣的過程,稱為光合作用。光合作用所產生的有機物主要是碳水化合物,並釋放出能量。
發展:
最早的光合作用:
1990年,一種紅藻化石在加拿大北極地區被發現,這種紅藻是地球上已知的第一種有性繁殖物種,也被認為是已發現的現代動植物最古老祖先。對紅藻化石的年齡此前沒有形成統一看法,多數觀點認為它們生活在距今約12億年前。
為了確定這種紅藻化石的年齡,研究人員專門到加拿大巴芬島收集包含這種紅藻化石的黑頁岩並用錸鋨同位素測年法分析,認為紅藻化石有10.47億年的歷史。
在確認紅藻化石年齡基礎上,研究人員用一種名為“分子鐘”的數學模型來計算基於基因突變率的生物進化事件。他們的結論是,約12.5億年前,真核生物開始進化出能進行光合作用的葉綠素。
意義:
將太陽能變為化學能
植物在同化無機碳化物的同時,把太陽能轉變為化學能,儲存在所形成的有機化合物中。每年光合作用所同化的太陽能約為人類所需能量的10倍。有機物中所儲存的化學能,除了供植物本身和全部異養生物之用外,更重要的是可供人類營養和活動的能量來源。因此可以說,光合作用提供今天的主要能源。綠色植物是一個巨型的能量轉換站。
把無機物變成有機物
植物透過光合作用製造有機物的規模是非常巨大的。據估計,植物每年可吸收CO2約合成約的有機物。地球上的自養植物同化的碳素,40%是由浮游植物同化的,餘下60%是由陸生植物同化的。人類所需的糧食、油料、纖維、木材、糖、水果等,無不來自光合作用,沒有光合作用,人類就沒有食物和各種生活用品。換句話說,沒有光合作用就沒有人類的生存和發展。
維持大氣的碳-氧平衡
大氣之所以能經常保持21%的氧含量,主要依賴於光合作用(光合作用過程中放氧量約)。光合作用一方面為有氧呼吸提供了條件,另一方面,的積累,逐漸形成了大氣表層的臭氧(O3)層。臭氧層能吸收太Sunny中對生物體有害的強烈的紫外輻射。植物的光合作用雖然能清除大氣中大量的CO2,但大氣中CO2的濃度仍然在增加,這主要是由於城市化及工業化所致。
反應過程:
光合作用的過程是一個比較複雜的問題,從表面上看,光合作用的總反應式似乎是一個簡單的氧化還原過程,但實質上包括一系列的光化學步驟和物質轉變問題。根據現代的資料,整個光合作用大致可分為下列3大步驟:①原初反應,包括光能的吸收、傳遞和轉換;②電子傳遞和光合磷酸化,形成活躍化學能(ATP和NADPH);③碳同化,把活躍的化學能轉變為穩定的化學能(固定CO2,形成糖類)。在介紹光合作用反應過程前,對光合作用過程中涉及的光合色素及光系統進行一定的瞭解是必要的。