回覆列表
  • 1 # 發財樹

    對數函式的歷史:

    16世紀末至17世紀初的時候,當時在自然科學領域(特別是天文學)的發展上經常遇到大量精密而又龐大的數值計算,於是數學家們為了尋求化簡的計算方法而發明了對數.

    德國的史提非(1487-1567)在1544年所著的《整數算術》中,寫出了兩個數列,左邊是等比數列(叫原數),右邊是一個等差數列(叫原數的代表,或稱指數,德文是Exponent ,有代表之意).

    欲求左邊任兩數的積(商),只要先求出其代表(指數)的和(差),然後再把這個和(差)對向左邊的一個原數,則此原數即為所求之積(商),可惜史提非並未作進一步探索,沒有引入對數的概念.

    納皮爾對數值計算頗有研究.他所製造的「納皮爾算籌」,化簡了乘除法運算,其原理就是用加減來代替乘除法.他發明對數的動機是為尋求球面三角計算的簡便方法,他依據一種非常獨等的與質點運動有關的設想構造出所謂對數方 法,其核心思想表現為算術數列與幾何數列之間的聯絡.在他的《奇妙的對數表的描述》中闡明瞭對數原理,後人稱為 納皮爾對數,記為Nap.㏒x,它與自然對數的關係為

    Nap.㏒x=107㏑(107/x)

    由此可知,納皮爾對數既不是自然對數,也不是常用對數,與現今的對數有一定的距離.

    瑞士的彪奇(1552-1632)也獨立地發現了對數,可能比納皮爾較早,但發表較遲(1620).

    英國的布里格斯在1624年創造了常用對數.

    1619年,倫敦斯彼得所著的《新對數》使對數與自然對數更接近(以e=2.71828...為底).

    對數的發明為當時社會的發展起了重要的影響,正如科學家伽利略(1564-1642)說:「給我時間,空間和對數,我可以創造出一個宇宙」.又如十八世紀數學家拉普拉斯( 1749-1827)亦提到:「對數用縮短計算的時間來使天文學家的壽命加倍」.

    最早傳入中國的對數著作是《比例與對數》,它是由波蘭的穆尼斯(1611-1656)和中國的薛鳳祚在17世紀中葉合 編而成的.當時在lg2=0.3010中,2叫「真數」,0.3010叫做「假數」,真數與假數對列成表,故稱對數表.後來改用 「假數」為「對數」.

    中國清代的數學家戴煦(1805-1860)發展了多種的求對數的捷法,著有《對數簡法》(1845)、《續對數簡法》(1846)等.1854年,英國的數學家艾約瑟(1825-1905) 看到這些著作後,大為歎服.

    當今中學數學教科書是先講「指數」,後以反函式形式引出「對數」的概念.但在歷史上,恰恰相反,對數概念不是來自指數,因為當時尚無分指數及無理指數的明確概念.布里格斯曾向納皮爾提出用冪指數表示對數的建議.1742年 ,J.威廉(1675-1749)在給G.威廉的《對數表》所寫的前言中作出指數可定義對數.而尤拉在他的名著《無窮小 分析尋論》(1748)中明確提出對數函式是指數函式的逆函式,和現在教科書中的提法一致.

    追問:

    追答:

    指數函式 指數函式的一般形式為y=a^x(a>0且不=1) ,從上面我們對於冪函式的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得 如圖所示為a的不同大小影響函式圖形的情況。 在函式y=a^x中可以看到: (1) 指數函式的定義域為所有實數的集合,這裡的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮, 同時a等於0一般也不考慮。 (2) 指數函式的值域為大於0的實數集合。 (3) 函式圖形都是下凹的。 (4) a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。 (5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函式的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。 (6) 函式總是在某一個方向上無限趨向於X軸,永不相交。 (7) 函式總是透過(0,1)這點 (8) 顯然指數函式無界。 (9) 指數函式既不是奇函式也不是偶函式。 (10)當兩個指數函式中的a互為倒數是,此函式影象是偶函式 冪函式個人暫時無資料,有性質你要不要

  • 中秋節和大豐收的關聯?
  • 英國的“群體免疫”這個事到底靠不靠譜,有沒有科學依據呀?