證明平面中的一條直線垂直於另一平面。
一個平面過另一平面的垂線,則這兩個平面相互垂直。
幾何描述:若a⊥β,a⊂α,則α⊥β
證明:任意兩個平面關係為相交或平行,設a⊥β,垂足為P,那麼P∈β
∵a⊂α,P∈a
∴P∈α
即α和β有公共點P,因此α與β相交。
設α∩β=b,∵P是α和β的公共點
∴P∈b
過P在β內作c⊥b
∵b⊂β,a⊥β
∴a⊥b,垂足為P
又c⊥b,垂足為P
∴∠aPc是二面角α-b-β的平面角
∵c⊂β
∴a⊥c,即∠aPc=90°
根據面面垂直的定義,α⊥β。
在幾何學和三角學中,直角,又稱正角,是角度為90度的角。它相對於四分之一個圓周(即四分之一個圓形),而兩個直角便等於一個半形(180°)。角度比直角小的稱為銳角,比直角大而比平角小的稱為鈍角。
一個直角等於90度,符號:Rt∠。
垂直度(Perpendicularity)是位置公差。垂直度評價直線之間、平面之間或直線與平面之間的垂直狀態。其中一個直線或平面是評價基準,而直線可以是被測樣品的直線部分或直線運動軌跡,平面可以是被測樣品的平面部分或運動軌跡形成的平面。
證明平面中的一條直線垂直於另一平面。
一個平面過另一平面的垂線,則這兩個平面相互垂直。
幾何描述:若a⊥β,a⊂α,則α⊥β
證明:任意兩個平面關係為相交或平行,設a⊥β,垂足為P,那麼P∈β
∵a⊂α,P∈a
∴P∈α
即α和β有公共點P,因此α與β相交。
設α∩β=b,∵P是α和β的公共點
∴P∈b
過P在β內作c⊥b
∵b⊂β,a⊥β
∴a⊥b,垂足為P
又c⊥b,垂足為P
∴∠aPc是二面角α-b-β的平面角
∵c⊂β
∴a⊥c,即∠aPc=90°
根據面面垂直的定義,α⊥β。
在幾何學和三角學中,直角,又稱正角,是角度為90度的角。它相對於四分之一個圓周(即四分之一個圓形),而兩個直角便等於一個半形(180°)。角度比直角小的稱為銳角,比直角大而比平角小的稱為鈍角。
一個直角等於90度,符號:Rt∠。
垂直度(Perpendicularity)是位置公差。垂直度評價直線之間、平面之間或直線與平面之間的垂直狀態。其中一個直線或平面是評價基準,而直線可以是被測樣品的直線部分或直線運動軌跡,平面可以是被測樣品的平面部分或運動軌跡形成的平面。