回覆列表
  • 1 # 滴逃逃

    小學六年級上冊數學計算公式

    三角形的面積=底×高÷2。 公式 S= a×h÷2

    正方形的面積=邊長×邊長 公式 S= a×a

    長方形的面積=長×寬 公式 S= a×b

    平行四邊形的面積=底×高 公式 S= a×h

    梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2

    內角和:三角形的內角和=180度。

    長方體的體積=長×寬×高 公式:V=abh

    長方體(或正方體)的體積=底面積×高 公式:V=abh

    正方體的體積=稜長×稜長×稜長 公式:V=aaa

    分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

    分數的乘法則:用分子的積做分子,用分母的積做分母。

    分數的除法則:除以一個數等於乘以這個數的倒數。

    單位換算

    (1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10釐米 1釐米=10毫米

    (2)1平方米=100平方分米 1平方分米=100平方釐米 1平方釐米=100平方毫米

    (3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米

    (4)1噸=1000千克 1千克= 1000克= 1公斤 = 1市斤

    (5)1公頃=10000平方米 1畝=666.666平方米

    (6)1升=1立方分米=1000毫升 1毫升=1立方厘米

    數量關係計算公式方面

    1.單價×數量=總價

    2.單產量×數量=總產量

    3.速度×時間=路程

    4.工效×時間=工作總量

    小學數學定義定理公式(二)

    一、算術方面

    1.加法交換律:兩數相加交換加數的位置,和不變。

    2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第

    三個數相加,和不變。

    3.乘法交換律:兩數相乘,交換因數的位置,積不變。

    4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

    5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。

    6.除法的性質:在除法裡,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。

    7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

    8.方程式:含有未知數的等式叫方程式。

    9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。

    學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

    10.分數:把單位“1”平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

    11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

    12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

    13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

    14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

    15.分數除以整數(0除外),等於分數乘以這個整數的倒數。

    16.真分數:分子比分母小的分數叫做真分數。

    17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。

    18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

    19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

    20.一個數除以分數,等於這個數乘以分數的倒數。

    21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

  • 中秋節和大豐收的關聯?
  • “知者行之始,行者知之成”的出處?