性質
①loga(1)=0;
②loga(a)=1;
2對數恆等式
a^logaN=N (a>0 ,a≠1)
3運演算法則
①loga(MN)=logaM+logaN;
②loga(M/N)=logaM-logaN;
如果a=e^m,則m為數a的自然對數,即lna=m,e=2.718281828…為自然對數
的底。定義: 若a^n=b(a>0且a≠1) 則n=log(a)(b)
基本性質:
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N);
3、log(a)(M÷N)=log(a)(M)-log(a)(N);
4、log(a)(M^n)=nlog(a)(M)
5、log(a^n)M=1/nlog(a)(M)
推導:
1、因為n=log(a)(b),代入則a^n=b,即a^(log(a)(b))=b。
2、MN=M×N
由基本性質1(換掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]
由指數的性質
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因為指數函式是單調函式,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3、與(2)類似處理 M/N=M÷N
a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
log(a)(M÷N) = log(a)(M) - log(a)(N)
4、與(2)類似處理
M^n=M^n 由基本性質1(換掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
log(a)(M^n)=nlog(a)(M)
基本性質4推廣
log(a^n)(b^m)=m/n*[log(a)(b)]
推導如下: 由換底公式(換底公式見下面)[lnx是log(e)(x),e稱作自然對數的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n)
換底公式的推導: 設e^x=b^m,e^y=a^n 則log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性質4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}
再由換底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]
4換底公式
設b=a^m,a=c^n,則b=(c^n)^m=c^(mn)………………………………①
對①取以a為底的對數,有:log(a)(b)=m……………………………..②
注:log(a)(b)表示以a為底x的對數。
換底公式拓展:
以e為底數和以a為底數的公式代換:
logae=1/(lna)
5推導公式
log(1/a)(1/b)=loga(b)
loga(b)*logb(a)=1
6求導數
(xlogax)"=logax+lna
其中,logax中的a為底數,x為真數;
(logax)"=1/xlna
特殊的即a=e時有
(logex)"=(lnx)"=1/x
性質
①loga(1)=0;
②loga(a)=1;
2對數恆等式
a^logaN=N (a>0 ,a≠1)
3運演算法則
①loga(MN)=logaM+logaN;
②loga(M/N)=logaM-logaN;
如果a=e^m,則m為數a的自然對數,即lna=m,e=2.718281828…為自然對數
的底。定義: 若a^n=b(a>0且a≠1) 則n=log(a)(b)
基本性質:
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N);
3、log(a)(M÷N)=log(a)(M)-log(a)(N);
4、log(a)(M^n)=nlog(a)(M)
5、log(a^n)M=1/nlog(a)(M)
推導:
1、因為n=log(a)(b),代入則a^n=b,即a^(log(a)(b))=b。
2、MN=M×N
由基本性質1(換掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]
由指數的性質
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因為指數函式是單調函式,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3、與(2)類似處理 M/N=M÷N
由基本性質1(換掉M和N)
a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
由指數的性質
a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因為指數函式是單調函式,所以
log(a)(M÷N) = log(a)(M) - log(a)(N)
4、與(2)類似處理
M^n=M^n 由基本性質1(換掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指數的性質
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因為指數函式是單調函式,所以
log(a)(M^n)=nlog(a)(M)
基本性質4推廣
log(a^n)(b^m)=m/n*[log(a)(b)]
推導如下: 由換底公式(換底公式見下面)[lnx是log(e)(x),e稱作自然對數的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n)
換底公式的推導: 設e^x=b^m,e^y=a^n 則log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性質4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}
再由換底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]
4換底公式
設b=a^m,a=c^n,則b=(c^n)^m=c^(mn)………………………………①
對①取以a為底的對數,有:log(a)(b)=m……………………………..②
注:log(a)(b)表示以a為底x的對數。
換底公式拓展:
以e為底數和以a為底數的公式代換:
logae=1/(lna)
5推導公式
log(1/a)(1/b)=loga(b)
loga(b)*logb(a)=1
6求導數
(xlogax)"=logax+lna
其中,logax中的a為底數,x為真數;
(logax)"=1/xlna
特殊的即a=e時有
(logex)"=(lnx)"=1/x