(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。(2)數列與其它知識的結合,其中有數列與函式、方程、不等式、三角、幾何的結合。(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題多以基礎題為主,解答題多以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函式、不等式的綜合作為最後一題,難度較大。接下來為大家介紹下高中數列解題中,經常會用到的幾種方法,大家可以按照這個解題思路來回答數列相關的問題,掌握了這幾點並融會貫通,你會發現,數列其實並不難。(1)函式的思想方法數列本身就是一個特殊的函式,而且是離散的函式,因此在解題過程中,尤其在遇到等差數列與等比數列這兩類特殊的數列時,可以將它們看成一個函式,進而運用函式的性質和特點來解決問題。(2)方程的思想方法數列這一章涉及了多個關於首項、末項、項數、公差、公比、第n項和前n項和這些量的數學公式,而公式本身就是一個等式,因此,在求這些數學量的過程中,可將它們看成相應的已知量和未知數,透過公式建立關於求未知量的方程,可以使解題變得清晰、明瞭,而且簡化了解題過程。(3)不完全歸納法不完全歸納法不但可以培養學生的數學直觀,而且可以幫助學生有效的解決問題,在等差數列以及等比數列通項公式推導的過程就用到了不完全歸納法。(4)倒序相加法等差數列前n項和公式的推導過程中,就根據等差數列的特點,很好的應用了倒序相加法,而且在這一章的很多問題都直接或間接地用到了這種方法。(5)錯位相減法錯位相減法是另一類數列求和的方法,它主要應用於求和的項之間透過一定的變形可以相互轉化,並且是多個數求和的問題。等比數列的前n項和公式的推導就用到了這種思想方法。
(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。(2)數列與其它知識的結合,其中有數列與函式、方程、不等式、三角、幾何的結合。(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題多以基礎題為主,解答題多以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函式、不等式的綜合作為最後一題,難度較大。接下來為大家介紹下高中數列解題中,經常會用到的幾種方法,大家可以按照這個解題思路來回答數列相關的問題,掌握了這幾點並融會貫通,你會發現,數列其實並不難。(1)函式的思想方法數列本身就是一個特殊的函式,而且是離散的函式,因此在解題過程中,尤其在遇到等差數列與等比數列這兩類特殊的數列時,可以將它們看成一個函式,進而運用函式的性質和特點來解決問題。(2)方程的思想方法數列這一章涉及了多個關於首項、末項、項數、公差、公比、第n項和前n項和這些量的數學公式,而公式本身就是一個等式,因此,在求這些數學量的過程中,可將它們看成相應的已知量和未知數,透過公式建立關於求未知量的方程,可以使解題變得清晰、明瞭,而且簡化了解題過程。(3)不完全歸納法不完全歸納法不但可以培養學生的數學直觀,而且可以幫助學生有效的解決問題,在等差數列以及等比數列通項公式推導的過程就用到了不完全歸納法。(4)倒序相加法等差數列前n項和公式的推導過程中,就根據等差數列的特點,很好的應用了倒序相加法,而且在這一章的很多問題都直接或間接地用到了這種方法。(5)錯位相減法錯位相減法是另一類數列求和的方法,它主要應用於求和的項之間透過一定的變形可以相互轉化,並且是多個數求和的問題。等比數列的前n項和公式的推導就用到了這種思想方法。