化簡多項式:In[1]:= FullSimplify[x^3 - 6 x^2 + 11 x - 6]Out[1]= (-3 + x) (-2 + x) (-1 + x)In[2]:= FullSimplify[(x^10 - 1) (x^10 + 1)]Out[2]= -1 + x^20將雙曲線表示式化簡為指數形式:In[1]:= FullSimplify[Cosh[x] - Sinh[x]]Out[1]= E^-x將指數表示式化簡為三角形式:In[1]:= FullSimplify[(1 + I) E^(-I x) + (1 - I) E^(I x)]Out[1]= 2 (Cos[x] + Sin[x])化簡一個代數數:In[1]:= FullSimplify[Sqrt[2] + Sqrt[3] - Sqrt[5 + 2 Sqrt[6]]]Out[1]= 0化簡超越數:In[1]:= FullSimplify[-I Log[(1 + 2 I)/Sqrt[5]]]Out[1]= ArcTan[2]In[2]:= FullSimplify[16 ArcTan[1/5] - 4 ArcTan[1/239]]Out[2]= \[Pi]化簡包含特殊函式的表示式:In[1]:= FullSimplify[ExpIntegralE[1 - n, x] x^n]Out[1]= Gamma[n, x]In[2]:= FullSimplify[Csc[Pi v] (BesselI[-v, z] - BesselI[v, z])/2]Out[2]= BesselK[v, z]/\[Pi]用假設化簡表示式:In[1]:= FullSimplify[ProductLog[x E^x], x >= -1]Out[1]= xIn[2]:= FullSimplify[E^(EllipticF[x, 1]), -Pi/2
化簡多項式:In[1]:= FullSimplify[x^3 - 6 x^2 + 11 x - 6]Out[1]= (-3 + x) (-2 + x) (-1 + x)In[2]:= FullSimplify[(x^10 - 1) (x^10 + 1)]Out[2]= -1 + x^20將雙曲線表示式化簡為指數形式:In[1]:= FullSimplify[Cosh[x] - Sinh[x]]Out[1]= E^-x將指數表示式化簡為三角形式:In[1]:= FullSimplify[(1 + I) E^(-I x) + (1 - I) E^(I x)]Out[1]= 2 (Cos[x] + Sin[x])化簡一個代數數:In[1]:= FullSimplify[Sqrt[2] + Sqrt[3] - Sqrt[5 + 2 Sqrt[6]]]Out[1]= 0化簡超越數:In[1]:= FullSimplify[-I Log[(1 + 2 I)/Sqrt[5]]]Out[1]= ArcTan[2]In[2]:= FullSimplify[16 ArcTan[1/5] - 4 ArcTan[1/239]]Out[2]= \[Pi]化簡包含特殊函式的表示式:In[1]:= FullSimplify[ExpIntegralE[1 - n, x] x^n]Out[1]= Gamma[n, x]In[2]:= FullSimplify[Csc[Pi v] (BesselI[-v, z] - BesselI[v, z])/2]Out[2]= BesselK[v, z]/\[Pi]用假設化簡表示式:In[1]:= FullSimplify[ProductLog[x E^x], x >= -1]Out[1]= xIn[2]:= FullSimplify[E^(EllipticF[x, 1]), -Pi/2