那是大學的內容,你是考全國化學卷的吧,那裡面有雜化軌道理論同一原子內由一個ns軌道和三個np軌道發生的雜化,稱為sp3雜化,雜化後組成的軌道稱為sp3雜化軌道。sp3雜化可以而且只能得到四個sp3雜化軌道。CH4分子中的碳原子就是發生sp3雜化,它的結構經實驗測知為正四面體結構,四個C-H鍵均等同,鍵角為109°28′。這樣的實驗結果,是電子配對法所難以解釋的,但雜化軌道理論認為,激發態C原子(2s12p3)的2s軌道與三個2p軌道可以發生sp3雜化,從而形成四個能量等同的sp3雜化軌道 軌道的相互疊加過程叫原子軌道的雜化。原子軌道疊加後產生的新的原子軌道叫雜化軌道。 ⑴ 在形成分子(主要是化合物)時,同一原子中能量相近的原子軌道 (一般為同一能級組的原子軌道) 相互疊加(雜化)形成一組的新的原子軌道。 ⑵ 雜化軌道比原來的軌道成鍵能力強,形成的化學鍵鍵能大,使生成的分子更穩定。由於成鍵原子軌道雜化後,軌道角度分佈圖的形狀發生了變化(形狀是一頭大,一頭小),雜化軌道在某些方向上的角度分佈,比未雜化的p軌道和s軌道的角度分佈大得多,它的大頭在成鍵時與原來的軌道相比能夠形成更大的重疊,因此雜化軌道比原有的原子軌道成鍵能力更強。 ⑶ 形成的雜化軌道之間應儘可能地滿足最小排斥原理(化學鍵間排斥力越小,體系越穩定),為滿足最小排斥原理, 雜化軌道之間的夾角應達到最大。 ⑷ 分子的空間構型主要取決於分子中σ鍵形成的骨架,雜化軌道形成的鍵為σ鍵,所以,雜化軌道的型別與分子的空間構型相關。 雜化型別有 1)sp雜化 同一原子內由一個ns軌道和一個np軌道發生的雜化,稱為sp雜化。雜化後組成的軌道稱為sp雜化軌道。sp雜化可以而且只能得到兩個sp雜化軌道。實驗測知,氣態BeCl2中的鈹原子就是發生sp雜化,它是一個直線型的共價分子。Be原子位於兩個Cl原子的中間,鍵角180°,兩個Be-Cl鍵的鍵長和鍵能都相等 2)sp2雜化 同一原子內由一個ns軌道和二個np軌道發生的雜化,稱為sp2雜化。雜化後組成的軌道稱為sp2雜化軌道。氣態氟化硼(BF3)中的硼原子就是sp2雜化,具有平面三角形的結構。B原子位於三角形的中心,三個B-F鍵是等同的,鍵角為120°
那是大學的內容,你是考全國化學卷的吧,那裡面有雜化軌道理論同一原子內由一個ns軌道和三個np軌道發生的雜化,稱為sp3雜化,雜化後組成的軌道稱為sp3雜化軌道。sp3雜化可以而且只能得到四個sp3雜化軌道。CH4分子中的碳原子就是發生sp3雜化,它的結構經實驗測知為正四面體結構,四個C-H鍵均等同,鍵角為109°28′。這樣的實驗結果,是電子配對法所難以解釋的,但雜化軌道理論認為,激發態C原子(2s12p3)的2s軌道與三個2p軌道可以發生sp3雜化,從而形成四個能量等同的sp3雜化軌道 軌道的相互疊加過程叫原子軌道的雜化。原子軌道疊加後產生的新的原子軌道叫雜化軌道。 ⑴ 在形成分子(主要是化合物)時,同一原子中能量相近的原子軌道 (一般為同一能級組的原子軌道) 相互疊加(雜化)形成一組的新的原子軌道。 ⑵ 雜化軌道比原來的軌道成鍵能力強,形成的化學鍵鍵能大,使生成的分子更穩定。由於成鍵原子軌道雜化後,軌道角度分佈圖的形狀發生了變化(形狀是一頭大,一頭小),雜化軌道在某些方向上的角度分佈,比未雜化的p軌道和s軌道的角度分佈大得多,它的大頭在成鍵時與原來的軌道相比能夠形成更大的重疊,因此雜化軌道比原有的原子軌道成鍵能力更強。 ⑶ 形成的雜化軌道之間應儘可能地滿足最小排斥原理(化學鍵間排斥力越小,體系越穩定),為滿足最小排斥原理, 雜化軌道之間的夾角應達到最大。 ⑷ 分子的空間構型主要取決於分子中σ鍵形成的骨架,雜化軌道形成的鍵為σ鍵,所以,雜化軌道的型別與分子的空間構型相關。 雜化型別有 1)sp雜化 同一原子內由一個ns軌道和一個np軌道發生的雜化,稱為sp雜化。雜化後組成的軌道稱為sp雜化軌道。sp雜化可以而且只能得到兩個sp雜化軌道。實驗測知,氣態BeCl2中的鈹原子就是發生sp雜化,它是一個直線型的共價分子。Be原子位於兩個Cl原子的中間,鍵角180°,兩個Be-Cl鍵的鍵長和鍵能都相等 2)sp2雜化 同一原子內由一個ns軌道和二個np軌道發生的雜化,稱為sp2雜化。雜化後組成的軌道稱為sp2雜化軌道。氣態氟化硼(BF3)中的硼原子就是sp2雜化,具有平面三角形的結構。B原子位於三角形的中心,三個B-F鍵是等同的,鍵角為120°