馬爾可夫過程(Markovprocess)是一類隨機過程。它的原始模型馬爾可夫鏈,由俄國數學家A.A.馬爾可夫於1907年提出。該過程具有如下特性:在已知目前狀態(現在)的條件下,它未來的演變(將來)不依賴於它以往的演變(過去)。例如森林中動物頭數的變化構成——馬爾可夫過程。在現實世界中,有很多過程都是馬爾可夫過程,如液體中微粒所作的布朗運動、傳染病受感染的人數、車站的候車人數等,都可視為馬爾可夫過程。關於該過程的研究,1931年A.H.柯爾莫哥洛夫在《機率論的解析方法》一文中首先將微分方程等分析的方法用於這類過程,奠定了馬爾可夫過程的理論基礎。 1951年前後,伊藤清建立的隨機微分方程的理論,為馬爾可夫過程的研究開闢了新的道路。1954年前後,W.費勒將半群方法引入馬爾可夫過程的研究。流形上的馬爾可夫過程、馬爾可夫向量場等都是正待深入研究的領域。 類重要的隨機過程,它的原始模型馬爾可夫鏈,由俄國數學家Α.Α.馬爾可夫於1907年提出。人們在實際中常遇到具有下述特性的隨機過程:在已知它所處的狀態的條件下,它未來的演變不依賴於它以往的演變。這種已知“現在”的條件下,“將來”與“過去”獨立的特性稱為馬爾可夫性,具有這種性質的隨機過程叫做馬爾可夫過程。荷花池中一隻青蛙的跳躍是馬爾可夫過程的一個形象化的例子。青蛙依照它瞬間或起的念頭從一片荷葉上跳到另一片荷葉上,因為青蛙是沒有記憶的,當所處的位置已知時,它下一步跳往何處和它以往走過的路徑無關。如果將荷葉編號並用X0,X1,X2,…分別表示青蛙最初處的荷葉號碼及第一次、第二次、……跳躍後所處的荷葉號碼,那麼{Xn,n≥0}就是馬爾可夫過程。液體中微粒所作的布朗運動,傳染病受感染的人數,原子核中一自由電子在電子層中的跳躍,人口增長過程等等都可視為馬爾可夫過程。還有些過程(例如某些遺傳過程)在一定條件下可以用馬爾可夫過程來近似。
馬爾可夫過程(Markovprocess)是一類隨機過程。它的原始模型馬爾可夫鏈,由俄國數學家A.A.馬爾可夫於1907年提出。該過程具有如下特性:在已知目前狀態(現在)的條件下,它未來的演變(將來)不依賴於它以往的演變(過去)。例如森林中動物頭數的變化構成——馬爾可夫過程。在現實世界中,有很多過程都是馬爾可夫過程,如液體中微粒所作的布朗運動、傳染病受感染的人數、車站的候車人數等,都可視為馬爾可夫過程。關於該過程的研究,1931年A.H.柯爾莫哥洛夫在《機率論的解析方法》一文中首先將微分方程等分析的方法用於這類過程,奠定了馬爾可夫過程的理論基礎。 1951年前後,伊藤清建立的隨機微分方程的理論,為馬爾可夫過程的研究開闢了新的道路。1954年前後,W.費勒將半群方法引入馬爾可夫過程的研究。流形上的馬爾可夫過程、馬爾可夫向量場等都是正待深入研究的領域。 類重要的隨機過程,它的原始模型馬爾可夫鏈,由俄國數學家Α.Α.馬爾可夫於1907年提出。人們在實際中常遇到具有下述特性的隨機過程:在已知它所處的狀態的條件下,它未來的演變不依賴於它以往的演變。這種已知“現在”的條件下,“將來”與“過去”獨立的特性稱為馬爾可夫性,具有這種性質的隨機過程叫做馬爾可夫過程。荷花池中一隻青蛙的跳躍是馬爾可夫過程的一個形象化的例子。青蛙依照它瞬間或起的念頭從一片荷葉上跳到另一片荷葉上,因為青蛙是沒有記憶的,當所處的位置已知時,它下一步跳往何處和它以往走過的路徑無關。如果將荷葉編號並用X0,X1,X2,…分別表示青蛙最初處的荷葉號碼及第一次、第二次、……跳躍後所處的荷葉號碼,那麼{Xn,n≥0}就是馬爾可夫過程。液體中微粒所作的布朗運動,傳染病受感染的人數,原子核中一自由電子在電子層中的跳躍,人口增長過程等等都可視為馬爾可夫過程。還有些過程(例如某些遺傳過程)在一定條件下可以用馬爾可夫過程來近似。