勾股定理的證明 勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若鶩,其中有著名的數學家,也有業餘數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反覆被人炒作,反覆被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅中國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。 在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。 首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。 1.中國方法 畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。 左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是 a2+b2=c2。 這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。 2.希臘方法 直接在直角三角形三邊上畫正方形,如圖。 容易看出, △ABA’ ≌△AA’’ C。 過C向A’’B’’引垂線,交AB於C’,交A’’B’’於C’’。 △ABA’與正方形ACDA’同底等高,前者面積為後者面積的一半,△AA’’C與矩形AA’’C’’C’同底等高,前者的面積也是後者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面積等於矩形AA’’C’’C’的面積。同理可得正方形BB’EC的面積等於矩形B’’BC’C’’的面積。 於是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這裡只用到簡單的面積關係,不涉及三角形和矩形的面積公式。 這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。 以上兩個證明方法之所以精彩,是它們所用到的定理少,都只用到面積的兩個基本觀念: ⑴ 全等形的面積相等; ⑵ 一個圖形分割成幾部分,各部分面積之和等於原圖形的面積。 這是完全可以接受的樸素觀念,任何人都能理解。 中國曆代數學家關於勾股定理的論證方法有多種,為勾股定理作的圖注也不少,其中較早的是趙爽(即趙君卿)在他附於《周髀算經》之中的論文《勾股圓方圖注》中的證明。採用的是割補法: 如圖,將圖中的四個直角三角形塗上硃色,把中間小正方形塗上黃色,叫做中黃實,以弦為邊的正方形稱為弦實,然後經過拼補搭配,“令出入相補,各從其類”,他肯定了勾股弦三者的關係是符合勾股定理的。即“勾股各自乘,並之為弦實,開方除之,即弦也”。 趙爽對勾股定理的證明,顯示了中國數學家高超的證題思想,較為簡明、直觀。 西方也有很多學者研究了勾股定理,給出了很多證明方法,其中有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為“百牛定理”。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。 下面介紹的是美國第二十任總統伽菲爾德對勾股定理的證明。 如圖, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比較以上二式,便得 a2+b2=c2。 這一證明由於用了梯形面積公式和三角形面積公式,從而使證明相當簡潔。 1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證明。5年後,伽菲爾德就任美國第二十任總統。後來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明瞭的證明,就把這一證法稱為勾股定理的“總統”證法,這在數學史上被傳為佳話。
勾股定理的證明 勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若鶩,其中有著名的數學家,也有業餘數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反覆被人炒作,反覆被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅中國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。 在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。 首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。 1.中國方法 畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。 左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是 a2+b2=c2。 這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。 2.希臘方法 直接在直角三角形三邊上畫正方形,如圖。 容易看出, △ABA’ ≌△AA’’ C。 過C向A’’B’’引垂線,交AB於C’,交A’’B’’於C’’。 △ABA’與正方形ACDA’同底等高,前者面積為後者面積的一半,△AA’’C與矩形AA’’C’’C’同底等高,前者的面積也是後者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面積等於矩形AA’’C’’C’的面積。同理可得正方形BB’EC的面積等於矩形B’’BC’C’’的面積。 於是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這裡只用到簡單的面積關係,不涉及三角形和矩形的面積公式。 這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。 以上兩個證明方法之所以精彩,是它們所用到的定理少,都只用到面積的兩個基本觀念: ⑴ 全等形的面積相等; ⑵ 一個圖形分割成幾部分,各部分面積之和等於原圖形的面積。 這是完全可以接受的樸素觀念,任何人都能理解。 中國曆代數學家關於勾股定理的論證方法有多種,為勾股定理作的圖注也不少,其中較早的是趙爽(即趙君卿)在他附於《周髀算經》之中的論文《勾股圓方圖注》中的證明。採用的是割補法: 如圖,將圖中的四個直角三角形塗上硃色,把中間小正方形塗上黃色,叫做中黃實,以弦為邊的正方形稱為弦實,然後經過拼補搭配,“令出入相補,各從其類”,他肯定了勾股弦三者的關係是符合勾股定理的。即“勾股各自乘,並之為弦實,開方除之,即弦也”。 趙爽對勾股定理的證明,顯示了中國數學家高超的證題思想,較為簡明、直觀。 西方也有很多學者研究了勾股定理,給出了很多證明方法,其中有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為“百牛定理”。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。 下面介紹的是美國第二十任總統伽菲爾德對勾股定理的證明。 如圖, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比較以上二式,便得 a2+b2=c2。 這一證明由於用了梯形面積公式和三角形面積公式,從而使證明相當簡潔。 1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證明。5年後,伽菲爾德就任美國第二十任總統。後來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明瞭的證明,就把這一證法稱為勾股定理的“總統”證法,這在數學史上被傳為佳話。