-
1 # 笛卡爾的叨
-
2 # 董豔臨
常見關於n的幾次方數列,可以用依次向減,求得是幾次方公式,然後計算出排列規律。比如:3,17,55,129,251,433,求前100個數字之和。計算:
3 17 55 129 251 433
14 38 74 122 182
24 36 48 60
12 12 12
減了4次出現一樣的數值,最下邊對應0次方,依次加1次方,可得這個數列是n的3次方公式,然後可以把4個數列數字代入n3次方公式,an3+bn2+cn+d=e,代幾個數列進去,用方程求得a、b、c、d的值。這個數列可以得到是2n3+1.
n3前n項和為sn=1/4n4+1/2n3+1/4n2,可以求得前100項和為1/4*100000000+1/2*1000000+1/4*10000=25502500,然後再乘以2加100,得51005010。
-
3 # 一學堂王老師
數學有很多有趣的求和公式,我一直建議學生不要強記公式,推導過程也要了解。我是王老師,致力於小學數學的精品問答!下面我列舉等差數列求和,等比數列求和,平方求和,立方求和(連續自然數)等小學奧數知識點。
等差數列求和① 利用配對方法推導
[引例] 1+2+3+4+5+6+…+n.
② 奇數項數等差數列可以利用中間項求和
→ 總和=中間項×項數。
等比數列求和[引例] 1+3+3²+3³+3⁴+3⁵+3⁶+3⁷
連續自然數的平方求和與立方求和以下適用於連續自然數,以從1開始的連續自然數為例
→ 平方求和公式推導
[引例] 1+2²+3²+4²+5²+…+n²
詳細推導過程可參考我的平方求和問答
→ 立方求和公式推導
[引例] 1+2³+3³+4³+5³+…+n³
小學階段可用歸納思維來總結推導
-
4 # 數學老陳
數列是高考的重點知識,而數列求和是高考的重中之重,所以對於數列求和公式的掌握顯得特別重要!
下圖是數列求和這一高考考點的命題方向分析,以及近三年全國卷中數列求和的考題分佈情況!
下面我們一起來看看數列求和有哪些型別
型別一 運用求和公式直接求和1.公式法
在數列求和中,最常見最基本的求和就是等差,等比數列中的求和,這時除了熟練的掌握求和公式外,還要熟練的記住一些常見的求和結論,再就是解題時注意數列的項數,以免套用公式時出錯!
例題
型別二 倒序相加發求和如果一個數列{an},首末兩段等“距離”的兩項的和相等,或等於同一個常數,那麼求這個數列的前n項和即可用倒序相加法,等差數列前n項和即是用此法推倒出來的!
例題
型別三 錯位相減求和如果一個數列的各項是由一個等差數列和一個等比數列的對應項之積構成的,那麼這個數列的前n項和即可用此法來求。等比數列的前n項和就是用此法推導的!
型別四 裂項相消求和把數列的通項拆成兩項之差,在求和時中間的一些項可以相互抵消,從而求得其和。
注意:在裂項相消求和時要注意前面剩下的項數與後面剩下的項數是相等的,前後剩下的項具有對稱性!
型別五 分組轉化求和法若一個數列的通項公式是由若干個等差數列或等比數列或可求和的數列組成,則求和時可用分組轉化求和,分別求和後然後相加減。
注意:對於不能由等差數列,等比數列的前n項和公式直接求和的問題,一般需要將數列通項的結構進行合理的拆分,轉化成若干個等差,等比數列的求和。
型別六 並項求和 -
5 # 學霸數學
高中階段數學求和公式比較多,公式法、錯位相減法、裂項相消法、分組求和等,用什麼方法求和取決於數列的形式,而不能單純套用公式:
公式法、錯位相減法等差數列與等比數列的求和公式,但有人知道公式的推導嗎?看下圖或者首尾相加
等比數列前N項和,其實用到了錯位相減法常規錯位相減法裂項相消法求和:分組求和 -
6 # 數學思維課堂
耳熟能詳的等差數列,等比數列等等。
如果說從有趣角度來說,斐波那契數列(兔子數列),金字塔數列,對於小學生容易激發興趣。很多的數列在計算或者推導中要和圖形結合起來,不然,學起來很枯燥的。
-
7 # 尚老師數學
數列求和公式主要有等差數列和等比數列求和公式,但是在求和的過程中有很多種方法,現將數列中求和的方法總結如下,簡單列舉下題型:
一、公式法求和:
二、分組轉化法求和:
三、並項法求和
四、裂項相消法求和
五、錯位相減法求和
回覆列表
答:
一、公式法求和利用等差數列、等比數列、或常見的可求和數列公式進行求和。
二、分組求和某些數列,透過適當分組,可得出兩個或幾個等差數列或等比數列,進而利用等差數列或等比數列的求和公式進行求和,最後得出原數列的和。
三、倒序相加如果一個數列中,與首末等距離的兩項之和等於首末兩項之和,那麼求和時可以將正著寫與倒著寫的兩個和式相加。
五、裂項相消實質是將數列中的通項進行分解,然後重新組合,使得中間項相互抵消,最終達到求和的目的。
以上,祝你好運。