差速器:
簡介:
汽車發動機的動力經離合器、變速器、傳動軸,最後傳送到驅動橋再左右分配給半軸驅動車輪,在這條動力傳送途徑上,驅動橋是最後一個總成,它的主要部件是減速器和差速器。減速器的作用就是減速增矩,這個功能完全靠齒輪與齒輪之間的齧合完成,比較容易理解。
而差速器就比較難理解,什麼叫差速器,為什麼要“差速”?
汽車差速器是驅動轎的主件。它的作用就是在向兩邊半軸傳遞動力的同時,允許兩邊半軸以不同的轉速旋轉,滿足兩邊車輪儘可能以純滾動的形式作不等距行駛,減少輪胎與地面的摩擦。
功能:
汽車在拐彎時車輪的軌線是圓弧,如果汽車向左轉彎,圓弧的中心點在左側,在相同的時間裡,右側輪子走的弧線比左側輪子長,為了平衡這個差異,就要左邊輪子慢一點,右邊輪子快一點,用不同的轉速來彌補距離的差異。
如果後輪軸做成一個整體,就無法做到兩側輪子的轉速差異,也就是做不到自動調整。為了解決這個問題,早在一百年前,法國雷諾汽車公司的創始人路易斯。雷諾就設計出了差速器這個玩意。
構成:
普通差速器由行星齒輪、行星輪架(差速器殼)、半軸齒輪等零件組成。
發動機的動力經傳動軸進入差速器,直接驅動行星輪架,再由行星輪帶動左、右兩條半軸,分別驅動左、右車輪。差速器的設計要求滿足:(左半軸轉速) (右半軸轉速)=2(行星輪架轉速)。當汽車直行時,左、右車輪與行星輪架三者的轉速相等處於平衡狀態,而在汽車轉彎時三者平衡狀態被破壞,導致內側輪轉速減小,外側輪轉速增加。
原理:
差速器的這種調整是自動的,這裡涉及到“最小能耗原理”,也就是地球上所有物體都傾向於耗能最小的狀態。例如把一粒豆子放進一個碗內,豆子會自動停留在碗底而絕不會停留在碗壁,因為碗底是能量最低的位置(位能),它自動選擇靜止(動能最小)而不會不斷運動。
同樣的道理,車輪在轉彎時也會自動趨向能耗最低的狀態,自動地按照轉彎半徑調整左右輪的轉速。
當轉彎時,由於外側輪有滑拖的現象,內側輪有滑轉的現象,兩個驅動輪此時就會產生兩個方向相反的附加力,由於“最小能耗原理”,必然導致兩邊車輪的轉速不同,從而破壞了三者的平衡關係,並透過半軸反映到半軸齒輪上,迫使行星齒輪產生自轉,使外側半軸轉速加快,內側半軸轉速減慢,從而實現兩邊車輪轉速的差異。
驅動橋兩側的驅動輪若用一根整軸剛性連線,則兩輪只能以相同的角速度旋轉。這樣,當汽車轉向行駛時,由於外側車輪要比內側車輪移過的距離大,將使外側車輪在滾動的同時產生滑拖,而內側車輪在滾動的同時產生滑轉。即使是汽車直線行駛,也會因路面不平或雖然路面平直但輪胎滾動半徑不等(輪胎製造誤差、磨損不同、受載不均或氣壓不等)而引起車輪的滑動。
車輪滑動時不僅加劇輪胎磨損、增加功率和燃料消耗,還會使汽車轉向困難、制動效能變差。為使車輪儘可能不發生滑動,在結構上必須保證各車輛能以不同的角速度轉動。
軸間差速器:通常從動車輪用軸承支承在心軸上,使之能以任何角速度旋轉,而驅動車輪分別與兩根半軸剛性連線,在兩根半軸之間裝有差速器。
這種差速器又稱為軸間差速器。
多軸驅動的越野汽車,為使各驅動橋能以不同角速度旋轉,以消除各橋上驅動輪的滑動,有的在兩驅動橋之間裝有軸間差速器。
差速器鎖:
普通差速器,雖然可以允許左右車輪以不同速度轉動,但當其中一個車輪空轉時,另一個在良好路面上的車輪也得不到扭矩,汽車就失去了行駛的動力。
在這種情況下,還不如沒有差速器更好。這樣兩個車輪連在一起,動力至少可以傳遞到另一側車輪,使汽車得到行駛的動力,從而擺脫困境。這種情況在中央差速器也同樣存在。這樣,人們就開發了各種個樣的差速器鎖止機構。
中央差速器鎖是安裝在中央差速器上的一種鎖止機構,用於四輪驅動車。
其作用是為了提高汽車在壞路面上的透過能力,即當汽車的一個驅動橋空轉時,能迅速鎖死差速器,使兩驅動橋變為剛性聯接。這樣就可以把大部分的扭矩甚至全部扭矩傳給不滑轉的驅動橋,充分利用它的附著力而產生足夠牽引力,使汽車能夠繼續行駛。
不同的差速器,所採用的鎖止方式是不同的,現在常見的差速器鎖,大致有以下幾種鎖止方式:強制鎖止式、高摩擦自鎖式、牙嵌式、託森式和粘性耦合式。
其中牙嵌式常用於中重型貨車,在此就不作詳述了。
1.強制鎖止式 強制鎖止式差速鎖就是在普通對稱式錐齒輪差速器上設定差速鎖,這種差速鎖結構簡單,易於製造,轉矩分配比率較高。但是操縱相當不便,一般需要停車;另外,如果過早接上或者過晚摘下差速鎖,那麼就會產生無差速器時的一系列問題,轉矩分配不可變。
2.高摩擦自鎖式 高摩擦自鎖式有摩擦片式和滑塊凸輪式等結構。摩擦片式透過摩擦片之間相對滑轉時產生的摩擦力矩來使差速器鎖止,這種差速鎖結構簡單,工作平穩,在轎車和輕型汽車上最常見;滑塊凸輪式利用滑塊和凸輪之間較大的摩擦力矩來使差速器鎖止,它可以在很大程度上提高汽車的透過效能,但是結構複雜,加工要求高,摩擦件磨損較大,成本較高。
以上兩種高摩擦自鎖式差速器鎖都可以在一定範圍內分配左右兩側車輪的輸出轉矩,並且接入脫離都是自動進行,因此應用日益廣泛。
3.託森式 託森式差速器是一種新型的軸間差速器,它在全輪驅動的轎車(如奧迪TT)上有廣泛運用。“託森”這個名稱是格里森公司的註冊商標,表示“轉矩靈敏差速器”。
它採用蝸輪蝸桿傳動具有自鎖特性的基本原理。託森式差速器結構緊湊,傳遞轉矩可變範圍較大且可調,故而廣泛用於全輪驅動轎車的中央差速器以及後驅動橋輪間差速器。但是由於其在高轉速轉矩差時的自動鎖止作用,一般不能用於前驅動橋輪間差速器。
4.粘性耦合式 目前,部分四輪驅動轎車上還採用粘性耦合聯軸器作為差速器使用。
這種新型的差速器使用的是矽油作為傳遞轉矩的介質。矽油具有很高的熱膨脹係數,當兩車軸的轉速差過大時,矽油溫度急劇上升,體積不斷膨脹,矽油推動摩擦葉片緊密結合,這是粘性耦合器兩端驅動軸直接聯成一體,即粘性耦合器鎖死。這種現象被稱為“駝峰現象”。這種現象的發生極其迅速,差速器驟然鎖死,因此車輛很容易脫離拋錨地。
一旦挍油停止之後,矽油的溫度逐漸下降,直至充分冷卻後,駝峰現象才會消失。鑑於粘性耦合器傳遞轉矩柔和平穩,差速響應快,它被推廣運用到了驅動橋的軸間差速系統,當作軸間差速器,使全輪驅動轎車的效能大幅度的提高。
差速器:
簡介:
汽車發動機的動力經離合器、變速器、傳動軸,最後傳送到驅動橋再左右分配給半軸驅動車輪,在這條動力傳送途徑上,驅動橋是最後一個總成,它的主要部件是減速器和差速器。減速器的作用就是減速增矩,這個功能完全靠齒輪與齒輪之間的齧合完成,比較容易理解。
而差速器就比較難理解,什麼叫差速器,為什麼要“差速”?
汽車差速器是驅動轎的主件。它的作用就是在向兩邊半軸傳遞動力的同時,允許兩邊半軸以不同的轉速旋轉,滿足兩邊車輪儘可能以純滾動的形式作不等距行駛,減少輪胎與地面的摩擦。
功能:
汽車在拐彎時車輪的軌線是圓弧,如果汽車向左轉彎,圓弧的中心點在左側,在相同的時間裡,右側輪子走的弧線比左側輪子長,為了平衡這個差異,就要左邊輪子慢一點,右邊輪子快一點,用不同的轉速來彌補距離的差異。
如果後輪軸做成一個整體,就無法做到兩側輪子的轉速差異,也就是做不到自動調整。為了解決這個問題,早在一百年前,法國雷諾汽車公司的創始人路易斯。雷諾就設計出了差速器這個玩意。
構成:
普通差速器由行星齒輪、行星輪架(差速器殼)、半軸齒輪等零件組成。
發動機的動力經傳動軸進入差速器,直接驅動行星輪架,再由行星輪帶動左、右兩條半軸,分別驅動左、右車輪。差速器的設計要求滿足:(左半軸轉速) (右半軸轉速)=2(行星輪架轉速)。當汽車直行時,左、右車輪與行星輪架三者的轉速相等處於平衡狀態,而在汽車轉彎時三者平衡狀態被破壞,導致內側輪轉速減小,外側輪轉速增加。
原理:
差速器的這種調整是自動的,這裡涉及到“最小能耗原理”,也就是地球上所有物體都傾向於耗能最小的狀態。例如把一粒豆子放進一個碗內,豆子會自動停留在碗底而絕不會停留在碗壁,因為碗底是能量最低的位置(位能),它自動選擇靜止(動能最小)而不會不斷運動。
同樣的道理,車輪在轉彎時也會自動趨向能耗最低的狀態,自動地按照轉彎半徑調整左右輪的轉速。
當轉彎時,由於外側輪有滑拖的現象,內側輪有滑轉的現象,兩個驅動輪此時就會產生兩個方向相反的附加力,由於“最小能耗原理”,必然導致兩邊車輪的轉速不同,從而破壞了三者的平衡關係,並透過半軸反映到半軸齒輪上,迫使行星齒輪產生自轉,使外側半軸轉速加快,內側半軸轉速減慢,從而實現兩邊車輪轉速的差異。
驅動橋兩側的驅動輪若用一根整軸剛性連線,則兩輪只能以相同的角速度旋轉。這樣,當汽車轉向行駛時,由於外側車輪要比內側車輪移過的距離大,將使外側車輪在滾動的同時產生滑拖,而內側車輪在滾動的同時產生滑轉。即使是汽車直線行駛,也會因路面不平或雖然路面平直但輪胎滾動半徑不等(輪胎製造誤差、磨損不同、受載不均或氣壓不等)而引起車輪的滑動。
車輪滑動時不僅加劇輪胎磨損、增加功率和燃料消耗,還會使汽車轉向困難、制動效能變差。為使車輪儘可能不發生滑動,在結構上必須保證各車輛能以不同的角速度轉動。
軸間差速器:通常從動車輪用軸承支承在心軸上,使之能以任何角速度旋轉,而驅動車輪分別與兩根半軸剛性連線,在兩根半軸之間裝有差速器。
這種差速器又稱為軸間差速器。
多軸驅動的越野汽車,為使各驅動橋能以不同角速度旋轉,以消除各橋上驅動輪的滑動,有的在兩驅動橋之間裝有軸間差速器。
差速器鎖:
普通差速器,雖然可以允許左右車輪以不同速度轉動,但當其中一個車輪空轉時,另一個在良好路面上的車輪也得不到扭矩,汽車就失去了行駛的動力。
在這種情況下,還不如沒有差速器更好。這樣兩個車輪連在一起,動力至少可以傳遞到另一側車輪,使汽車得到行駛的動力,從而擺脫困境。這種情況在中央差速器也同樣存在。這樣,人們就開發了各種個樣的差速器鎖止機構。
中央差速器鎖是安裝在中央差速器上的一種鎖止機構,用於四輪驅動車。
其作用是為了提高汽車在壞路面上的透過能力,即當汽車的一個驅動橋空轉時,能迅速鎖死差速器,使兩驅動橋變為剛性聯接。這樣就可以把大部分的扭矩甚至全部扭矩傳給不滑轉的驅動橋,充分利用它的附著力而產生足夠牽引力,使汽車能夠繼續行駛。
不同的差速器,所採用的鎖止方式是不同的,現在常見的差速器鎖,大致有以下幾種鎖止方式:強制鎖止式、高摩擦自鎖式、牙嵌式、託森式和粘性耦合式。
其中牙嵌式常用於中重型貨車,在此就不作詳述了。
1.強制鎖止式 強制鎖止式差速鎖就是在普通對稱式錐齒輪差速器上設定差速鎖,這種差速鎖結構簡單,易於製造,轉矩分配比率較高。但是操縱相當不便,一般需要停車;另外,如果過早接上或者過晚摘下差速鎖,那麼就會產生無差速器時的一系列問題,轉矩分配不可變。
2.高摩擦自鎖式 高摩擦自鎖式有摩擦片式和滑塊凸輪式等結構。摩擦片式透過摩擦片之間相對滑轉時產生的摩擦力矩來使差速器鎖止,這種差速鎖結構簡單,工作平穩,在轎車和輕型汽車上最常見;滑塊凸輪式利用滑塊和凸輪之間較大的摩擦力矩來使差速器鎖止,它可以在很大程度上提高汽車的透過效能,但是結構複雜,加工要求高,摩擦件磨損較大,成本較高。
以上兩種高摩擦自鎖式差速器鎖都可以在一定範圍內分配左右兩側車輪的輸出轉矩,並且接入脫離都是自動進行,因此應用日益廣泛。
3.託森式 託森式差速器是一種新型的軸間差速器,它在全輪驅動的轎車(如奧迪TT)上有廣泛運用。“託森”這個名稱是格里森公司的註冊商標,表示“轉矩靈敏差速器”。
它採用蝸輪蝸桿傳動具有自鎖特性的基本原理。託森式差速器結構緊湊,傳遞轉矩可變範圍較大且可調,故而廣泛用於全輪驅動轎車的中央差速器以及後驅動橋輪間差速器。但是由於其在高轉速轉矩差時的自動鎖止作用,一般不能用於前驅動橋輪間差速器。
4.粘性耦合式 目前,部分四輪驅動轎車上還採用粘性耦合聯軸器作為差速器使用。
這種新型的差速器使用的是矽油作為傳遞轉矩的介質。矽油具有很高的熱膨脹係數,當兩車軸的轉速差過大時,矽油溫度急劇上升,體積不斷膨脹,矽油推動摩擦葉片緊密結合,這是粘性耦合器兩端驅動軸直接聯成一體,即粘性耦合器鎖死。這種現象被稱為“駝峰現象”。這種現象的發生極其迅速,差速器驟然鎖死,因此車輛很容易脫離拋錨地。
一旦挍油停止之後,矽油的溫度逐漸下降,直至充分冷卻後,駝峰現象才會消失。鑑於粘性耦合器傳遞轉矩柔和平穩,差速響應快,它被推廣運用到了驅動橋的軸間差速系統,當作軸間差速器,使全輪驅動轎車的效能大幅度的提高。