每個合數都可以寫成幾個質數相乘的形式,這幾個質數都叫做這個合數的質因數。
如果一個質數是某個數的約數,那麼就說這個質數是這個數的質因數。
就是一個數的約數,並且是質數,比如8=2乘2乘2,2就是8的質因數。12=2×2×3,2和3就是12的質因數。把一個式子以12=2×2×3的形式表示,叫做分解質因數。16=2×2×2×2,2就是16的質因數,把一個合數寫成幾個質數相乘的形式表示,叫做分解質因數。
分解質因數的方法是先用一個合數的最小質因數去除這個合數,得出的數若是一個質數,就寫成這個合數相乘形式;若是一個合數就繼續按原來的方法,直至最後是一個質數 。
分解質因數的有兩種表示方法,除了大家最常用知道的“短除分解形式”之外,還有一種方法就是“塔形分解形式”(參見上圖)。
分解質因數對解決一些自然數和乘積的問題有很大的幫助,同時又為求最大公約數和最小公倍數做了重要的鋪墊。
如何分解質因數的方法
短除法
求最大公約數的一種方法,也可用來求最小公倍數。
求幾個數最大公約數的方法,開始時用觀察比較的方法,即:先把每個數的約數找出來,然後再找出公約數,最後在公約數中找出最大公約數。
例如:求12與18的最大公約數。
12的約數有:1、2、3、4、6、12。
18的約數有:1、2、3、6、9、18。
12與18的公約數有:1、2、3、6。
12與18的最大公約數是6。
這種方法對求兩個以上數的最大公約數,特別是數目較大的數,顯然是不方便的。於是又採用了給每個數分別分解質因數的方法。
12=2×2×3
18=2×3×3
12與18都可以分成幾種形式不同的乘積,但分成質因數連乘積就只有以上一種,而且不能再分解了。所分出的質因數無疑都能整除原數,因此這些質因數也都是原數的約數。從分解的結果看,12與18都有公約數2和3,而它們的乘積2×3=6,就是 12與18的最大公約數。
採用分解質因數的方法,也是採用短除的形式,只不過是分別短除,然後再找公約數和最大公約數。如果把這兩個數合在一起短除,則更容易找出公約數和最大公約數。
從短除中不難看出,12與18都有公約數2和3,它們的乘積2×3=6就是12與18的最大公約數。與前邊分別分解質因數相比較,可以發現:不僅結果相同,而且短除法豎式左邊就是這兩個數的公共質因數,而兩個數的最大公約數,就是這兩個數的公共質因數的連乘積。
實際應用中,是把需要計算的兩個或多個數放置在一起,進行短除。
在計算多個數的最小公倍數時,對其中任意兩個數存在的約數都要算出,其它無此約數的數則原樣落下。最後把所有約數和最終剩下無法約分的數連乘即得到最小公倍數。
每個合數都可以寫成幾個質數相乘的形式,這幾個質數都叫做這個合數的質因數。
如果一個質數是某個數的約數,那麼就說這個質數是這個數的質因數。
就是一個數的約數,並且是質數,比如8=2乘2乘2,2就是8的質因數。12=2×2×3,2和3就是12的質因數。把一個式子以12=2×2×3的形式表示,叫做分解質因數。16=2×2×2×2,2就是16的質因數,把一個合數寫成幾個質數相乘的形式表示,叫做分解質因數。
分解質因數的方法是先用一個合數的最小質因數去除這個合數,得出的數若是一個質數,就寫成這個合數相乘形式;若是一個合數就繼續按原來的方法,直至最後是一個質數 。
分解質因數的有兩種表示方法,除了大家最常用知道的“短除分解形式”之外,還有一種方法就是“塔形分解形式”(參見上圖)。
分解質因數對解決一些自然數和乘積的問題有很大的幫助,同時又為求最大公約數和最小公倍數做了重要的鋪墊。
如何分解質因數的方法
短除法
求最大公約數的一種方法,也可用來求最小公倍數。
求幾個數最大公約數的方法,開始時用觀察比較的方法,即:先把每個數的約數找出來,然後再找出公約數,最後在公約數中找出最大公約數。
例如:求12與18的最大公約數。
12的約數有:1、2、3、4、6、12。
18的約數有:1、2、3、6、9、18。
12與18的公約數有:1、2、3、6。
12與18的最大公約數是6。
這種方法對求兩個以上數的最大公約數,特別是數目較大的數,顯然是不方便的。於是又採用了給每個數分別分解質因數的方法。
12=2×2×3
18=2×3×3
12與18都可以分成幾種形式不同的乘積,但分成質因數連乘積就只有以上一種,而且不能再分解了。所分出的質因數無疑都能整除原數,因此這些質因數也都是原數的約數。從分解的結果看,12與18都有公約數2和3,而它們的乘積2×3=6,就是 12與18的最大公約數。
採用分解質因數的方法,也是採用短除的形式,只不過是分別短除,然後再找公約數和最大公約數。如果把這兩個數合在一起短除,則更容易找出公約數和最大公約數。
從短除中不難看出,12與18都有公約數2和3,它們的乘積2×3=6就是12與18的最大公約數。與前邊分別分解質因數相比較,可以發現:不僅結果相同,而且短除法豎式左邊就是這兩個數的公共質因數,而兩個數的最大公約數,就是這兩個數的公共質因數的連乘積。
實際應用中,是把需要計算的兩個或多個數放置在一起,進行短除。
在計算多個數的最小公倍數時,對其中任意兩個數存在的約數都要算出,其它無此約數的數則原樣落下。最後把所有約數和最終剩下無法約分的數連乘即得到最小公倍數。