轉為十進位制為:0*2^0+1*2^1+0*2^2+1*2^3+0*2^4+1*2^5= 2^1+2^3+2^5=42 二進位制是計算技術中廣泛採用的一種數制。二進位制資料是用0和1兩個數碼來表示的數。它的基數為2,進位規則是“逢二進一”,借位規則是“借一當二”,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進位制系統,資料在計算機中主要是以補碼的形式儲存的。計算機中的二進位制則是一個非常微小的開關,用“開”來表示1,“關”來表示0。 20世紀被稱作第三次科技革命的重要標誌之一的計算機的發明與應用,因為數字計算機只能識別和處理由‘0’.‘1’符號串組成的程式碼。其運算模式正是二進位制。19世紀愛爾蘭邏輯學家喬治布林對邏輯命題的思考過程轉化為對符號"0"".""1""的某種代數演算,二進位制是逢2進位的進位制。0、1是基本算符。因為它只使用0、1兩個數字符號,非常簡單方便,易於用電子方式實現。 十進位制整數轉二進位制數:“除以2取餘,逆序排列”(除二取餘法) 【例】: 89÷2 ……1 44÷2 ……0 22÷2 ……0 11÷2 ……1 5÷2 ……1 2÷2 ……0 1 · 十進位制小數轉二進位制數:“乘以2取整,順序排列”(乘2取整法) 【例】: (0.625)10= (0.101)2 0.625X2=1.25 ……1 0.25 X2=0.50 ……0 0.50 X2=1.00 ……1 十進位制1至128的二進位制表示: 0=0 1=1 2=10 3=11 4=100 5=101 6=110 7=111 8=1000 9=1001 10=1010 11=1011 12=1100 13=1101 14=1110 15=1111 16=10000 17=10001 18=10010 19=10011 20=10100 21=10101 22=10110 23=10111 24=11000 25=11001 26=11010 27=11011 28=11100 29=11101 30=11110 31=11111 32=100000 33=100001 34=100010 35=100011 36=100100 37=100101 38=100110 39=100111 40=101000 41=101001 42=101010 43=101011 44=101100 45=101101 46=101110 47=101111 48=110000 49=110001 50=110010 51=110011 52=110100 53=110101 54=110110 55=110111 56=111000 57=111001 58=111010 59=111011 60=111100 61=111101 62=111110 63=111111 64=1000000 65=1000001 66=1000010 67=1000011 68=1000100 69=1000101 70=1000110 71=1000111 72=1001000 73=1001001 74=1001010 75=1001011 76=1001100 77=1001101 78=1001110 79=1001111 80=1010000 81=1010001 82=1010010 83=1010011 84=1010100 85=1010101 86=1010110 87=1010111 88=1011000 89=1011001 90=1011010 91=1011011 92=1011100 93=1011101 94=1011110 95=1011111 96=1100000 97=1100001 98=1100010 99=1100011 100=1100100 101=1100101 102=1100110 103=1100111 104=1101000 105=1101001 106=1101010 107=1101011 108=1101100 109=1101101 110=1101110 111=1101111 112=1110000 113=1110001 114=1110010 115=1110011 116=1110100 117=1110101 118=1110110 119=1110111 120=1111000 121=1111001 122=1111010 123=1111011 124=1111100 125=1111101 126=1111110 127=1111111 128=10000000
轉為十進位制為:0*2^0+1*2^1+0*2^2+1*2^3+0*2^4+1*2^5= 2^1+2^3+2^5=42 二進位制是計算技術中廣泛採用的一種數制。二進位制資料是用0和1兩個數碼來表示的數。它的基數為2,進位規則是“逢二進一”,借位規則是“借一當二”,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進位制系統,資料在計算機中主要是以補碼的形式儲存的。計算機中的二進位制則是一個非常微小的開關,用“開”來表示1,“關”來表示0。 20世紀被稱作第三次科技革命的重要標誌之一的計算機的發明與應用,因為數字計算機只能識別和處理由‘0’.‘1’符號串組成的程式碼。其運算模式正是二進位制。19世紀愛爾蘭邏輯學家喬治布林對邏輯命題的思考過程轉化為對符號"0"".""1""的某種代數演算,二進位制是逢2進位的進位制。0、1是基本算符。因為它只使用0、1兩個數字符號,非常簡單方便,易於用電子方式實現。 十進位制整數轉二進位制數:“除以2取餘,逆序排列”(除二取餘法) 【例】: 89÷2 ……1 44÷2 ……0 22÷2 ……0 11÷2 ……1 5÷2 ……1 2÷2 ……0 1 · 十進位制小數轉二進位制數:“乘以2取整,順序排列”(乘2取整法) 【例】: (0.625)10= (0.101)2 0.625X2=1.25 ……1 0.25 X2=0.50 ……0 0.50 X2=1.00 ……1 十進位制1至128的二進位制表示: 0=0 1=1 2=10 3=11 4=100 5=101 6=110 7=111 8=1000 9=1001 10=1010 11=1011 12=1100 13=1101 14=1110 15=1111 16=10000 17=10001 18=10010 19=10011 20=10100 21=10101 22=10110 23=10111 24=11000 25=11001 26=11010 27=11011 28=11100 29=11101 30=11110 31=11111 32=100000 33=100001 34=100010 35=100011 36=100100 37=100101 38=100110 39=100111 40=101000 41=101001 42=101010 43=101011 44=101100 45=101101 46=101110 47=101111 48=110000 49=110001 50=110010 51=110011 52=110100 53=110101 54=110110 55=110111 56=111000 57=111001 58=111010 59=111011 60=111100 61=111101 62=111110 63=111111 64=1000000 65=1000001 66=1000010 67=1000011 68=1000100 69=1000101 70=1000110 71=1000111 72=1001000 73=1001001 74=1001010 75=1001011 76=1001100 77=1001101 78=1001110 79=1001111 80=1010000 81=1010001 82=1010010 83=1010011 84=1010100 85=1010101 86=1010110 87=1010111 88=1011000 89=1011001 90=1011010 91=1011011 92=1011100 93=1011101 94=1011110 95=1011111 96=1100000 97=1100001 98=1100010 99=1100011 100=1100100 101=1100101 102=1100110 103=1100111 104=1101000 105=1101001 106=1101010 107=1101011 108=1101100 109=1101101 110=1101110 111=1101111 112=1110000 113=1110001 114=1110010 115=1110011 116=1110100 117=1110101 118=1110110 119=1110111 120=1111000 121=1111001 122=1111010 123=1111011 124=1111100 125=1111101 126=1111110 127=1111111 128=10000000