-
1 # 多多要開心
-
2 # 52sissi
許多人將機器學習視為通向人工智慧的途徑,但是對於統計學家或商人而言,機器學習也可以是一種強大的工具,可以實現前所未有的預測結果。
為什麼機器學習如此重要?
在開始學習之前,我們想花一些時間強調WHY機器學習非常重要。
總之,每個人都知道人工智慧或人工智慧。通常,當我們聽到AI時,我們會想象機器人到處走動,執行與人類相同的任務。但是,我們必須瞭解,雖然有些任務很容易,但有些任務卻很困難,並且距離擁有像人類一樣的機器人還有很長的路要走。
但是,機器學習是非常真實的並且已經存在。它可以被視為AI的一部分,因為當我們想到AI時,我們想象的大部分內容都是基於機器學習的。
在過去,我們相信未來的這些機器人將需要向我們學習一切。但是人腦是複雜的,並且並非可以輕鬆描述其協調的所有動作和活動。1959年,亞瑟·塞繆爾(Arthur Samuel)提出了一個絕妙的主意,即我們不需要教計算機,但我們應該讓他們自己學習。塞繆爾(Samuel)也創造了“機器學習”一詞,從那時起,當我們談論機器學習過程時,我們指的是計算機自主學習的能力。
機器學習有哪些應用?
在準備這篇文章的內容時,我寫下了沒有進一步說明的示例,假定所有人都熟悉它們。然後我想:人們知道這些是機器學習的例子嗎?
讓我們考慮一些。
自然語言處理,例如翻譯。如果您認為百度翻譯是一本非常好的字典,請再考慮一下。百度翻譯本質上是一組機器學習演算法。百度不需要更新百度 Translate;它會根據不同單詞的使用情況自動更新。
哦,哇 還有什麼?
雖然仍然是主題,但Siri,Alexa,Cortana都是語音識別和合成的例項。有些技術可以使這些助手識別或發音以前從未聽過的單詞。他們現在能做的事令人難以置信,但在不久的將來,它們將給人留下深刻的印象!
SPAM過濾。令人印象深刻,但值得注意的是,SPAM不再遵循一組規則。它自己瞭解了什麼是垃圾郵件,什麼不是垃圾郵件。
推薦系統。Netflix,淘寶,Facebook。推薦給您的所有內容都取決於您的搜尋活動,喜歡,以前的行為等等。一個人不可能像這些網站一樣提出適合您的推薦。最重要的是,他們跨平臺,跨裝置和跨應用程式執行此操作。儘管有些人認為它是侵入性的,但通常情況下,資料不是由人處理的。通常,它是如此複雜,以至於人類無法掌握它。但是,機器將賣方與買方配對,將電影與潛在觀眾配對,將照片與希望觀看的人配對。這極大地改善了我們的生活。
說到這,淘寶擁有如此出色的機器學習演算法,它們可以高度確定地預測您將購買什麼以及何時購買。那麼,他們如何處理這些資訊?他們將產品運送到最近的倉庫,因此您可以在當天訂購併收到產品。難以置信!
金融機器學習
我們名單上的下一個是金融交易。交易涉及隨機行為,不斷變化的資料以及從政治到司法的各種因素,這些因素與傳統金融相距甚遠。儘管金融家無法預測很多這種行為,但是機器學習演算法會照顧到這種情況,並且對市場的變化做出響應的速度比人們想象的要快。
這些都是業務實現,但還有更多。您可以預測員工是否會留在公司或離開公司,或者可以確定客戶是否值得您光顧-他們可能會從競爭對手那裡購買還是根本不購買。您可以最佳化流程,預測銷售,發現隱藏的機會。機器學習為機會開闢了一個全新的世界,對於在公司戰略部門工作的人們來說,這是一個夢想成真。
無論如何,這些已在這裡使用。然後,我們將進入自動駕駛汽車的新境界。
機器學習演算法
直到最近幾年,無人駕駛汽車還是科幻小說。好吧,不再了。自動駕駛汽車已經驅動了數百萬英里(即使不是數十億英里)。那是怎麼發生的?沒有一套規則。而是一組機器學習演算法,使汽車學習瞭如何極其安全有效地駕駛。
我們可以繼續學習幾個小時,但我相信您的主旨是:“為什麼要使用機器學習”。
因此,對您來說,這不是為什麼的問題,而是如何的問題。
這就是我們的Python機器學習課程所要解決的問題。蓬勃發展的資料科學事業中最重要的技能之一-如何建立機器學習演算法!
如何建立機器學習演算法?
假設我們已經提供了輸入資料,建立機器學習演算法最終意味著建立一個輸出正確資訊的模型。
現在,將此模型視為黑匣子。我們提供輸入,並提供輸出。例如,考慮到過去幾天的氣象資訊,我們可能想建立一個預測明天天氣的模型。我們將輸入模型的輸入可以是度量,例如溫度,溼度和降水。我們將獲得的輸出將是明天的天氣預報。
現在,在對模型的輸出感到滿意和自信之前,我們必須訓練模型。訓練是機器學習中的核心概念,因為這是模型學習如何理解輸入資料的過程。訓練完模型後,我們可以簡單地將其輸入資料並獲得輸出。
如何訓練機器學習演算法?
訓練演算法背後的基本邏輯涉及四個要素:
a.資料
b.模型
c.目標函式
d.最佳化演算法
讓我們探索每個。
首先,我們必須準備一定數量的資料進行訓練。
通常,這是歷史資料,很容易獲得。
其次,我們需要一個模型。
我們可以訓練的最簡單模型是線性模型。在天氣預報示例中,這將意味著找到一些係數,將每個變數與它們相乘,然後將所有結果求和以得到輸出。但是,正如我們稍後將看到的那樣,線性模型只是冰山一角。依靠線性模型,深度機器學習使我們可以建立複雜的非線性模型。它們通常比簡單的線性關係更好地擬合數據。
第三個要素是目標函式。
到目前為止,我們獲取了資料,並將其輸入到模型中,並獲得了輸出。當然,我們希望此輸出儘可能接近實際情況。大資料分析機器學習AI入門指南https://www.aaa-cg.com.cn/data/2273.html這就是目標函數出現的地方。它估計平均而言,模型輸出的正確性。整個機器學習框架歸結為最佳化此功能。例如,如果我們的函式正在測量模型的預測誤差,則我們希望將該誤差最小化,或者換句話說,將目標函式最小化。
我們最後的要素是最佳化演算法。它由機制組成,透過這些機制我們可以更改模型的引數以最佳化目標函式。例如,如果我們的天氣預報模型為:
明天的天氣等於:W1乘以溫度,W2乘以溼度,最佳化演算法可能會經過以下值:
W1和W2是將更改的引數。對於每組引數,我們將計算目標函式。然後,我們將選擇具有最高預測能力的模型。我們怎麼知道哪一個最好?好吧,那將是具有最佳目標函式的那個,不是嗎?好的。大!
您是否注意到我們說了四個成分,而不是說了四個步驟?這是有意的,因為機器學習過程是迭代的。我們將資料輸入模型,並透過目標函式比較準確性。然後,我們更改模型的引數並重復操作。當我們達到無法再最佳化或不需要最佳化的程度時,我們將停止,因為我們已經找到了解決問題的足夠好的解決方案。
https://www.toutiao.com/i6821026294461891086/
回覆列表
機器學習是一門多領域交叉學科,涉及機率論、統計學、逼近論、凸分析、演算法複雜度理論等多門學科。專門研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的效能。
機器學習有下面幾種定義:
(1) 機器學習是一門人工智慧的科學,該領域的主要研究物件是人工智慧,特別是如何在經驗學習中改善具體演算法的效能。
(2) 機器學習是對能透過經驗自動改進的計算機演算法的研究。
(3) 機器學習是用資料或以往的經驗,以此最佳化計算機程式的效能標準。
機器學習通常分為四類:
監督學習--監督學習是從標記的訓練資料來推斷一個功能的機器學習任務。分為分類和迴歸兩種任務。常見演算法有:k-Nearest Neighbors (K近鄰演算法)、Linear Regression(線性迴歸)、Logistic Regression(邏輯迴歸)、Support Vector Machines (SVMs) (支援向量機)、Decision Trees and Random Forests(決策樹 和 隨機深林)、Neural networks(神經網路)無監督學習--所有資料只有特徵向量沒有標籤,但是可以發現這些資料呈現出聚群的結構,本質是一個相似的型別的會聚集在一起。把這些沒有標籤的資料分成一個一個組合,就是聚類(Clustering)。常見的無監督學習演算法:Clustering演算法有k-Means、Hierarchical Cluster Analysis (HCA)、Expectation Maximization;Visualization and dimensionality reduction演算法有Principal Component Analysis (PCA)、Kernel PCA、Locally-Linear Embedding (LLE)、t-distributed Stochastic Neighbor Embedding (t-SNE);Association rule learning演算法有Apriori、Eclat。常見的工作有降維、異常檢測、關聯分析(如啤酒和尿布的例子)。半監督學習--半監督學習在訓練階段結合了大量未標記的資料和少量標籤資料。與使用所有標籤資料的模型相比,使用訓練集的訓練模型在訓練時可以更為準確,而且訓練成本更低。強化學習--所謂強化學習就是智慧系統從環境到行為對映的學習,以使獎勵訊號(強化訊號)函式值最大。如著名的alpha go。下圖是每個小方向包含的一些相關演算法。
如果用python的話,可以去看scikit_learn這個包,基本上很多演算法都實現了。
主要看你是想了解哪個方面,是簡單地知道是幹嘛的,都有哪些內容,還是說要上手實踐。有什麼問題還可以繼續問我。