轉載:黃金分割就是把東西分為0.682和0.318兩個分已知線段為兩部分,使其中一部分是全線段與另一部分的比例中項,這就是在中學幾何課本中提到的黃金分割問題。若C為線段AB的滿足條件的分點,則可求得AC 約為 0.618AB。這個分割在課本上被稱作黃金分割,我們有時也可說是將線段分成中末比、中外比或外內比。若用G來表示它,G 被稱為黃金比或黃金分割數。 分已知線段為兩部分,使其中一部分是全線段與另一部分的比例中項,這就是在中學幾何課本中提到的黃金分割問題。若C為線段AB的滿足條件的分點,則可求得AC 約為 0.618AB。這個分割在課本上被稱作黃金分割,我們有時也可說是將線段分成中末比、中外比或外內比。若用G來表示它,G 被稱為黃金比或黃金分割數。 分已知線段為兩部分,使其中一部分是全線段與另一部分的比 例中項,這就是在中學幾何課本中提到的黃金分割問題。若C為線段AB的滿足條件的分點,則可求得AC 約為 0.618AB。這個分割在課本上被稱作黃金分割,我們有時也可說是將線段分成中末比、中外比或外內比。若用G來表示它,G 被稱為黃金比或黃金分割數。人體美學中的黃金分割人體美學觀察受到種族、社會、個人各方面因素的影響,牽涉到形體與精神、區域性與整體的辯證統一,只有整體的和諧、比例協調,才能稱得上一種完整的美。本次討論的問題主要為美學觀察的一些定律。(一)黃金分割律 這是公元前六世紀古希臘數學家畢達哥拉斯所發現,後來古希臘美學家柏拉圖將此稱為黃金分割。這其實是一個數字的比例關係,即把一條線分為兩部分,此時長段與短段之比恰恰等於整條線與長段之比,其數值比為1.618 : 1或1 : 0.618,也就是說長段的平方等於全長與短段的乘積。0.618,以嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。 為什麼人們對這樣的比例,會本能地感到美的存在?其實這與人類的演化和人體正常發育密切相關。據研究,從猿到人的進化過程中,骨骼方面以頭骨和腿骨變化最大,軀體外形由於近似黃金而矩形變化最小,人體結構中有許多比例關係接近0.618,從而使人體美在幾十萬年的歷史積澱中固定下來。人類最熟悉自己,勢必將人體美作為最高的審美標準,由物及人,由人及物,推而廣之,凡是與人體相似的物體就喜歡它,就覺得美。於是黃金分割律作為一種重要形式美法則,成為世代相傳的審美經典規律,至今不衰! 近年來,在研究黃金分割與人體關係時,發現了人體結構中有14個“黃金點”(物體短段與長段之比值為 0.618),12個“黃金矩形”(寬與長比值為 0.618的長方形)和2個“黃金指數”(兩物體間的比例關係為 0.618)。 黃金點:(1)肚臍:頭頂-足底之分割點;(2)咽喉:頭頂-肚臍之分割點;(3)、(4)膝關節:肚臍-足底之分割點;(5)、(6)肘關節:肩關節-中指尖之分割點;(7)、(8)乳頭:軀幹乳頭縱軸上這分割點;(9)眉間點:髮際-頦底間距上1/3與中下2/3之分割點;(10)鼻下點:髮際-頦底間距下1/3與上中2/3之分割點;(11)唇珠點:鼻底-頦底間距上1/3與中下2/3之分割點;(12)頦唇溝正路點:鼻底-頦底間距下1/3與上中2/3之分割點;(13)左口角點:口裂水平線左1/3與右2/3之分割點;(14) 右口角點:口裂水平線右1/3與左2/3之分割點。 面部黃金分割律 面部三庭五眼 黃金矩形:(1)軀體輪廓:肩寬與臀寬的平均數為寬,肩峰至臀底的高度為長;(2)面部輪 廓 :眼水平線的面寬為寬,髮際至頦底間距為長;(3)鼻部輪廓:鼻翼為寬,鼻根至鼻底間距為長;(4)唇部輪廓:靜止狀態時上下唇峰間距為寬,口角間距為長;(5)、(6)手部輪廓:手的橫徑為寬,五指併攏時取平均數為長;(7)、(8)、(9)、(10)、(11)、(12)上頜切牙、側切牙、尖牙(左右各三個)輪廓:最大的近遠中徑為寬,齒齦徑為長。黃金指數:(1)反映鼻口關係的鼻唇指數:鼻翼寬與口角間距之比近似黃金數;(2)反映眼口關係的目唇指數:口角間距與兩眼外眥間距之比近似黃金數。 0.618,作為一個人體健美的標準尺度之一,是無可非議的,但不能忽視其存在著“模糊特性”,它同其它美學引數一樣,都有一個允許變化的幅度,受種族、地域、個體差異的制約。(二)比例關係 是用數字來表示人體美,並根據一定的基準進行比較。用同一人體的某一部位作為基準,來判定它與人體的比例關係的方法被稱為同身方法(見中圖)。分為三組:係數法,常指頭高身長指數,如畫人體有坐五、立七,即身高在坐位時為頭高的五倍、立位時為7或7.5倍;百分數法,將身長視為100%,身體各部位在其中的比例;兩分法:即把人體分成大小兩部分,大的部分從腳到臍,小的部分為臍到頭頂。 標準的面型,其長寬比例協調,符合三停五眼(見右圖)。三停是指臉型的長度,從頭部發
轉載:黃金分割就是把東西分為0.682和0.318兩個分已知線段為兩部分,使其中一部分是全線段與另一部分的比例中項,這就是在中學幾何課本中提到的黃金分割問題。若C為線段AB的滿足條件的分點,則可求得AC 約為 0.618AB。這個分割在課本上被稱作黃金分割,我們有時也可說是將線段分成中末比、中外比或外內比。若用G來表示它,G 被稱為黃金比或黃金分割數。 分已知線段為兩部分,使其中一部分是全線段與另一部分的比例中項,這就是在中學幾何課本中提到的黃金分割問題。若C為線段AB的滿足條件的分點,則可求得AC 約為 0.618AB。這個分割在課本上被稱作黃金分割,我們有時也可說是將線段分成中末比、中外比或外內比。若用G來表示它,G 被稱為黃金比或黃金分割數。 分已知線段為兩部分,使其中一部分是全線段與另一部分的比 例中項,這就是在中學幾何課本中提到的黃金分割問題。若C為線段AB的滿足條件的分點,則可求得AC 約為 0.618AB。這個分割在課本上被稱作黃金分割,我們有時也可說是將線段分成中末比、中外比或外內比。若用G來表示它,G 被稱為黃金比或黃金分割數。人體美學中的黃金分割人體美學觀察受到種族、社會、個人各方面因素的影響,牽涉到形體與精神、區域性與整體的辯證統一,只有整體的和諧、比例協調,才能稱得上一種完整的美。本次討論的問題主要為美學觀察的一些定律。(一)黃金分割律 這是公元前六世紀古希臘數學家畢達哥拉斯所發現,後來古希臘美學家柏拉圖將此稱為黃金分割。這其實是一個數字的比例關係,即把一條線分為兩部分,此時長段與短段之比恰恰等於整條線與長段之比,其數值比為1.618 : 1或1 : 0.618,也就是說長段的平方等於全長與短段的乘積。0.618,以嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。 為什麼人們對這樣的比例,會本能地感到美的存在?其實這與人類的演化和人體正常發育密切相關。據研究,從猿到人的進化過程中,骨骼方面以頭骨和腿骨變化最大,軀體外形由於近似黃金而矩形變化最小,人體結構中有許多比例關係接近0.618,從而使人體美在幾十萬年的歷史積澱中固定下來。人類最熟悉自己,勢必將人體美作為最高的審美標準,由物及人,由人及物,推而廣之,凡是與人體相似的物體就喜歡它,就覺得美。於是黃金分割律作為一種重要形式美法則,成為世代相傳的審美經典規律,至今不衰! 近年來,在研究黃金分割與人體關係時,發現了人體結構中有14個“黃金點”(物體短段與長段之比值為 0.618),12個“黃金矩形”(寬與長比值為 0.618的長方形)和2個“黃金指數”(兩物體間的比例關係為 0.618)。 黃金點:(1)肚臍:頭頂-足底之分割點;(2)咽喉:頭頂-肚臍之分割點;(3)、(4)膝關節:肚臍-足底之分割點;(5)、(6)肘關節:肩關節-中指尖之分割點;(7)、(8)乳頭:軀幹乳頭縱軸上這分割點;(9)眉間點:髮際-頦底間距上1/3與中下2/3之分割點;(10)鼻下點:髮際-頦底間距下1/3與上中2/3之分割點;(11)唇珠點:鼻底-頦底間距上1/3與中下2/3之分割點;(12)頦唇溝正路點:鼻底-頦底間距下1/3與上中2/3之分割點;(13)左口角點:口裂水平線左1/3與右2/3之分割點;(14) 右口角點:口裂水平線右1/3與左2/3之分割點。 面部黃金分割律 面部三庭五眼 黃金矩形:(1)軀體輪廓:肩寬與臀寬的平均數為寬,肩峰至臀底的高度為長;(2)面部輪 廓 :眼水平線的面寬為寬,髮際至頦底間距為長;(3)鼻部輪廓:鼻翼為寬,鼻根至鼻底間距為長;(4)唇部輪廓:靜止狀態時上下唇峰間距為寬,口角間距為長;(5)、(6)手部輪廓:手的橫徑為寬,五指併攏時取平均數為長;(7)、(8)、(9)、(10)、(11)、(12)上頜切牙、側切牙、尖牙(左右各三個)輪廓:最大的近遠中徑為寬,齒齦徑為長。黃金指數:(1)反映鼻口關係的鼻唇指數:鼻翼寬與口角間距之比近似黃金數;(2)反映眼口關係的目唇指數:口角間距與兩眼外眥間距之比近似黃金數。 0.618,作為一個人體健美的標準尺度之一,是無可非議的,但不能忽視其存在著“模糊特性”,它同其它美學引數一樣,都有一個允許變化的幅度,受種族、地域、個體差異的制約。(二)比例關係 是用數字來表示人體美,並根據一定的基準進行比較。用同一人體的某一部位作為基準,來判定它與人體的比例關係的方法被稱為同身方法(見中圖)。分為三組:係數法,常指頭高身長指數,如畫人體有坐五、立七,即身高在坐位時為頭高的五倍、立位時為7或7.5倍;百分數法,將身長視為100%,身體各部位在其中的比例;兩分法:即把人體分成大小兩部分,大的部分從腳到臍,小的部分為臍到頭頂。 標準的面型,其長寬比例協調,符合三停五眼(見右圖)。三停是指臉型的長度,從頭部發