1、十字相乘法的方法:
十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。
2、十字相乘法的用處:
(1)用十字相乘法來分解因式。
(2)用十字相乘法來解一元二次方程。
十字相乘法的優點:
用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
十字相乘法的缺陷:
1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。
2、十字相乘法只適用於二次三項式型別的題目。
3、十字相乘法比較難學。
十字相乘法解題例項: 1)、 用十字相乘法解一些簡單常見的題目 例1把m²+4m-12分解因式
分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題 解:因為 1 -2 1 ╳ 6 所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式 分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項係數分為1×5,常數項分為-4×2時,才符合本題 解: 因為 1 2 5 ╳ -4 所以5x²+6x-8=(x+2)(5x-4)
1、十字相乘法的方法:
十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。
2、十字相乘法的用處:
(1)用十字相乘法來分解因式。
(2)用十字相乘法來解一元二次方程。
十字相乘法的優點:
用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
十字相乘法的缺陷:
1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。
2、十字相乘法只適用於二次三項式型別的題目。
3、十字相乘法比較難學。
十字相乘法解題例項: 1)、 用十字相乘法解一些簡單常見的題目 例1把m²+4m-12分解因式
分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題 解:因為 1 -2 1 ╳ 6 所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式 分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項係數分為1×5,常數項分為-4×2時,才符合本題 解: 因為 1 2 5 ╳ -4 所以5x²+6x-8=(x+2)(5x-4)