解方程寫出驗算過程:
1、把未知數的值代入原方程
2、左邊等於多少,是否等於右邊
3、判斷未知數的值是不是方程的解。
例如:4.6x=23
解:x=23÷4.6
x=5
檢驗:
把×=5代入方程得:
左邊=4.6×5
=23=右邊
所以,x=5是原方程的解。
擴充套件資料
解法過程
方法
⒈估演算法:剛學解方程時的入門方法。直接估計方程的解,然後代入原方程驗證。
⒉應用等式的性質進行解方程。
⒊合併同類項:使方程變形為單項式
⒋移項:將含未知數的項移到左邊,常數項移到右邊
例如:3+x=18
解:x=18-3
x=15
⒌去括號:運用去括號法則,將方程中的括號去掉。
4x+2(79-x)=192
解: 4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
x=17
6.公式法:有一些方程,已經研究出解的一般形式,成為固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7.函式影象法:利用方程的解為兩個以上關聯函式影象的交點的幾何意義求解。
解方程寫出驗算過程:
1、把未知數的值代入原方程
2、左邊等於多少,是否等於右邊
3、判斷未知數的值是不是方程的解。
例如:4.6x=23
解:x=23÷4.6
x=5
檢驗:
把×=5代入方程得:
左邊=4.6×5
=23=右邊
所以,x=5是原方程的解。
擴充套件資料
解法過程
方法
⒈估演算法:剛學解方程時的入門方法。直接估計方程的解,然後代入原方程驗證。
⒉應用等式的性質進行解方程。
⒊合併同類項:使方程變形為單項式
⒋移項:將含未知數的項移到左邊,常數項移到右邊
例如:3+x=18
解:x=18-3
x=15
⒌去括號:運用去括號法則,將方程中的括號去掉。
4x+2(79-x)=192
解: 4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
x=17
6.公式法:有一些方程,已經研究出解的一般形式,成為固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7.函式影象法:利用方程的解為兩個以上關聯函式影象的交點的幾何意義求解。