蛋白質一級結構(primary structure):指蛋白質中共價連線的氨基酸殘基的排列順序。蛋白質二級結構(protein在蛋白質分子中的局布區域內氨基酸殘基的有規則的排列。常見的有二級結構有α-螺旋和β-摺疊。二級結構是透過骨架上的羰基和醯胺基團之間形成的氫鍵維持的。
蛋白質三級結構(protein tertiary structure): 蛋白質分子處於它的天然摺疊狀態的三維構象。三級結構是在二級結構的基礎上進一步盤繞,摺疊形成的。三級結構主要是靠氨基酸側鏈之間的疏水相互作用,氫鍵,範德華力和鹽鍵(離子鍵)維持的。此外共價二硫鍵在穩定某些蛋白質的構象方面也起著重要作用。
蛋白質四級結構(protein quaternary structure):多亞基蛋白質的三維結構。實際上是具有三級結構多肽(亞基)以適當方式聚合所呈現的三維結構。
超二級結構(super-secondary structure):也稱為基元(motif).在蛋白質中,特別是球蛋白中,經常可以看到由若干相鄰的二級結構單元組合在一起,彼此相互作用,形成有規則的,在空間上能辨認的二級結構組合體。
結構域(domain):在蛋白質的三級結構內的獨立摺疊單元。結構域通常都是幾個超二級結構單元的組合。
二硫鍵(disulfide bond):透過兩個(半胱氨酸)巰基的氧化形成的共價鍵。二硫鍵在穩定某些蛋白的三維結構上起著重要的作用。
範德華力(van der Waals force):中性原子之間透過瞬間靜電相互作用產生的一弱的分子之間的力。當兩個原子之間的距離為它們範德華力半徑之和時,範德華力最強。強的範德華力的排斥作用可防止原子相互靠近。
α-螺旋(α-heliv):蛋白質中常見的二級結構,肽鏈主鏈繞假想的中心軸盤繞成螺旋狀,一般都是右手螺旋結構,螺旋是靠鏈內氫鍵維持的。每個氨基酸殘基(第n個)的羰基與多肽鏈C端方向的第4個殘基(第4+n個)的醯胺氮形成氫鍵。在古典的右手α-螺旋結構中,螺距為0.54nm,每一圈含有3.6個氨基酸殘基,每個殘基沿著螺旋的長軸上升0.15nm.
β-摺疊(β-sheet): 蛋白質中常見的二級結構,是由伸展的多肽鏈組成的。摺疊片的構象是透過一個肽鍵的羰基氧和位於同一個肽鏈的另一個醯氨氫之間形成的氫鍵維持的。氫鍵幾乎都垂直伸展的肽鏈,這些肽鏈可以是平行排列(由N到C方向)或者是反平行排列(肽鏈反向排列)。
β-轉角(β-turn):也是多肽鏈中常見的二級結構,是連線蛋白質分子中的二級結構(α-螺旋和β-摺疊),使肽鏈走向改變的一種非重複多肽區,一般含有2~16個氨基酸殘基。含有5個以上的氨基酸殘基的轉角又常稱為環(loop)。常見的轉角含有4個氨基酸殘基有兩種型別:轉角I的特點是:第一個氨基酸殘基羰基氧與第四個殘基的醯氨氮之間形成氫鍵;轉角Ⅱ的第三個殘基往往是甘氨酸。這兩種轉角中的第二個殘侉大都是脯氨酸。
一、 核酸的一級結構
核酸是由核苷酸聚合而成的生物大分子。組成DNA的脫氧核糖核苷酸主要是dAMP、dGMP、dCMP和dTMP,組成RNA的核糖核苷酸主要是AMP、GMP、CMP和UMP。核酸中的核苷酸以3’,5’磷酸二酯鍵構成無分支結構的線性分子。核酸鏈具有方向性,有兩個末端分別是5’末端與3’末端。5’末端含磷酸基團,3’末端含羥基。核酸鏈內的前一個核苷酸的3’羥基和下一個核苷酸的5’磷酸形成3’,5’磷酸二酯鍵,故核酸中的核苷酸被稱為核苷酸殘基。。通常將小於50個核苷酸殘基組成的核酸稱為寡核苷酸(oligonucleotide),大於50個核苷酸殘基稱為多核苷酸(polynucleotide)。
二、 DNA的空間結構
(一)DNA的二級結構
DNA二級結構即雙螺旋結構(double helix structure)。20世紀50年代初Chargaff等人分析多種生物DNA的鹼基組成發現的規則。
DNA雙螺旋模型的提出不僅揭示了遺傳資訊穩定傳遞中DNA半保留複製的機制,而且是分子生物學發展的里程碑。
DNA雙螺旋結構特點如下:①兩條DNA互補鏈反向平行。②由脫氧核糖和磷酸間隔相連而成的親水骨架在螺旋分子的外側,而疏水的鹼基對則在螺旋分子內部,鹼基平面與螺旋軸垂直,螺旋旋轉一週正好為10個鹼基對,螺距為3.4nm,這樣相鄰鹼基平面間隔為0.34nm並有一個36嫻募薪恰"跠NA雙螺旋的表面存在一個大溝(major groove)和一個小溝(minor groove),蛋白質分子透過這兩個溝與鹼基相識別。④兩條DNA鏈依靠彼此鹼基之間形成的氫鍵而結合在一起。根據鹼基結構特徵,只能形成嘌呤與嘧啶配對,即A與T相配對,形成2個氫鍵;G與C相配對,形成3個氫鍵。因此G與C之間的連線較為穩定。⑤DNA雙螺旋結構比較穩定。維持這種穩定性主要靠鹼基對之間的氫鍵以及鹼基的堆集力(stacking force)。
生理條件下,DNA雙螺旋大多以B型形式存在。右手雙螺旋DNA除B型外還有A型、C型、D型、E型。此外還發現左手雙螺旋Z型DNA。Z型DNA是1979年Rich等在研究人工合成的CGCGCG的晶體結構時發現的。Z-DNA的特點是兩條反向平行的多核苷酸互補鏈組成的螺旋呈鋸齒形,其表面只有一條深溝,每旋轉一週是12個鹼基對。研究表明在生物體內的DNA分子中確實存在Z-DNA區域,其功能可能與基因表達的調控有關。DNA二級結構還存在三股螺旋DNA,三股螺旋DNA中通常是一條同型寡核苷酸與寡嘧啶核苷酸-寡嘌呤核苷酸雙螺旋的大溝結合,三股螺旋中的第三股可以來自分子間,也可以來自分子內。三股螺旋DNA存在於基因調控區和其他重要區域,因此具有重要生理意義。
(二) DNA三級結構——超螺旋結構
DNA三級結構是指DNA鏈進一步扭曲盤旋形成超螺旋結構。生物體內有些DNA是以雙鏈環狀DNA形式存在,如有些病毒DNA,某些噬菌體DNA,細菌染色體與細菌中質粒DNA,真核細胞中的線粒體DNA、葉綠體DNA都是環狀的。環狀DNA分子可以是共價閉合環,即環上沒有缺口,也可以是缺口環,環上有一個或多個缺口。在DNA雙螺旋結構基礎上,共價閉合環DNA(covalently close circular DNA)可以進一步扭曲形成超螺旋形(super helical form)。根據螺旋的方向可分為正超螺旋和負超螺旋。正超螺旋使雙螺旋結構更緊密,雙螺旋圈數增加,而負超螺旋可以減少雙螺旋的圈數。幾乎所有天然DNA中都存在負超螺旋結構。
(三) DNA的四級結構——DNA與蛋白質形成複合物
在真核生物中其基因組DNA要比原核生物大得多,如原核生物大腸桿菌的DNA約為4.7×103kb,而人的基因組DNA約為3×106 kb,因此真核生物基因組DNA通常與蛋白質結合,經過多層次反覆摺疊,壓縮近10 000倍後,以染色體形式存在於平均直徑為5μm的細胞核中。線性雙螺旋DNA摺疊的第一層次是形成核小體(nucleosome)。猶如一串念珠, 核小體由直徑為11nm×5.5nm的組蛋白核心和盤繞在核心上的DNA構成。核心由組蛋白H2A、H2B、H3和H4各2分子組成,為八聚體,146 bp長的 DNA以左手螺旋盤繞在組蛋白的核心1.75圈,形成核小體的核心顆粒,各核心顆粒間有一個連線區,約有60 bp雙螺旋DNA和1個分子組蛋白H1構成。平均每個核小體重複單位約佔DNA 200 bp。DNA組裝成核小體其長度約縮短7倍。在此基礎上核小體又進一步盤繞摺疊,最後形成染色體。
(四)DNA結構的多型性
Watson和Crick所推匯出來的DNA結構在生物學研究中有深遠意義。他們是以在生理鹽溶液中抽出的DNA纖維在92%相對溫度下進行X-射線衍射圖譜為依據進行推設的。在這一條件下得出的DNA稱B構象。實際上在溶液中的DNA的確呈這一構象,這也是最常見的DNA構象。但是,研究表明DNA的結構是動態的。在以鈉、鉀或銫作反離子,相對溫度為75%時,DNA分子的X-射線衍射圖給出的是A構象。這一構象不僅出現於脫水DNA中,還出現在RNA分子中的雙螺旋區域的DNA-RNA雜交分子中。如果以鋰作反離子,相對溫度進一步降為66%,則DNA是C構象。但是這一構象僅在實驗室中觀察到,還未在生物體中發現。這些DNA分子中G-C鹼基對較少,這些分子將取D和E構象。這些研究表明DNA的分子結構不是一成不變的,在不同的條件下可以有所不同。但是,這些不同構象的DNA都有共同的一點,即它們都是右手雙螺旋;兩條反向平行的核苷酸鏈透過Watson-Crick鹼基配對結合在一起;鏈的重複單位是單核苷酸;這些螺旋中都有兩個螺旋溝,分為大溝與小溝,只是它們的寬窄和深淺程度有所不同。
但是,Wang和Rich等人在研究人工合成的CGCGCG單晶的X-射線衍射圖譜時分別發現這種六聚體的構象與上面講到的完全不同。它是左手雙螺旋,在主鏈中各個磷酸根呈鋸齒狀排列,有如“之”字形一樣,因此叫它Z構象(英文字Zigzag的第一個字母)。還有,這一構象中的重複單位是二核苷酸而不是單核苷酸;而且Z-DNA只有一個螺旋溝,它相當於B構象中的小溝,它狹而深,大溝則不復存在。
立即就有幾個問題被提了出來:這種結構是怎樣生成的?這一結構在天然狀態下存在嗎?它有什麼生物學意義?
研究表明,Z-DNA的形成是DNA單鏈上出現嘌呤與嘧啶交替排列所成的。比如CGCGCGCG或者CACACACA。這種鹼基排列方式會造成核苷酸的糖苷鍵的順式和反式構象的交替存在。當鹼基與糖構成反式結構時,它們之間離得遠;而當它們成順式時,就彼此接近。嘧啶糖苷鍵通常是反式的,而嘌呤糖苷酸鍵既可成順式的也可成反式的。而在Z-DNA中,嘌呤鹼是順式的。這樣,在Z-DNA中嘧啶的糖苷鏈離開小溝向外挑出,而嘌呤上的糖苷鍵則彎向小溝。嘌呤與嘧啶的交替排列就使得糖苷鍵也是順式與反式交替排列,從而使Z-DNA主鏈呈鋸齒狀或“之”字形。
人們相信,並用實驗證明細胞DNA分子中確實存在有Z-DNA區。而且,細胞內有一些因素可以促使B-DNA轉變為Z-DNA。比如,胞嘧啶第五位碳原子的甲基化,在甲基周圍形成區域性的疏水區。這一區域擴伸到B-DNA的大溝中,使B-DNA不穩定而轉變為Z-DNA。這種C5甲基化現象在真核生物中是常見的。因此在生物B構象的DNA中某些區段具有Z-DNA構象是可能的。DNA真是一個構象可變動態分子。
Z-DNA有會麼生物學意義呢?應當指出Z-DNA的形成通常在熱力學上是不利的。因為Z-DNA中帶負電荷的磷酸根距離太近了,這會產物靜電排斥。但是,DNA鏈的區域性不穩定區的存在就成為潛在的解鏈位點。DNA解螺旋卻是DNA複製和轉錄等過程中必要的環節,因此認為這一結構位點與基因調節有關。比如SV40增強子區中就有這種結構,又如鼠類微小病毒DNS複製區起始點附近有GC交替排列序列。此外,DNA螺旋上溝的特徵在其資訊表達過程中起關鍵作用。調控蛋白都是透過其分子上特定的氨基酸側鏈與DNA雙螺旋溝中的鹼基對一側的氫原子供體或受體相互作用,形成氫鍵從而識別DNA上的遺傳資訊的。大溝所帶的遺傳資訊比小溝多。溝的寬窄和深淺也直接影響到調控蛋白質對DNA資訊的識別。Z-DNA中大溝消失,小溝狹而深,使調探蛋白識別方式也發生變化。這些都暗示Z-DNA的存在不僅僅是由於DNA中出現嘌呤-啶嘧交替排列之結果,也一定是在漫漫的進化長河中對DNA序列與結構不斷調整與篩選的結果,有其內在而深刻的含意,只是人們還未充分認識而已。
DNA構象的可變性,或者說DNA二級結構的多型性的發現拓寬了人們的視野。原來,生物體中最為穩定的遺傳物質也可以採用不同的姿態來實現其豐富多采的生物的奧妙,也讓人們在這一領域中探索和攀越時減少疲勞和厭倦,樂而忘返,從而有更多更新的發現。
多年來,DNA結構的研究手段主要是X射線衍線技術,其結果是透過間接觀測多個DNA分子有關結構引數的平均值而獲得的。同時,這項技術的樣品分析條件使被測DNA分子與天然狀態相差甚遠。因此,在反映DNA結構真實性方面這種方法存在著缺陷。1989年,應用掃描隧道顯微鏡(STM)研究DNA結構克服了上述技術的缺陷。這種先進的顯微技術,不僅可將被測物放大500萬倍,且能直接觀測接近天然條件下單個DNA分子的結構細節。應該說它所取得的DNA結構資料更具有"權威性"。表1-6是STM測到的B-DNA結構引數及其與X射線衍線資料的比較結果。STM研究還證實了d(CG)重複序列的寡核苷酸片段為Z-DNA結構的事實。STM技術的應用是DNA結構研究中的重要進展,可望在探索DNA結構的某些未知點上展示巨大潛力。
蛋白質一級結構(primary structure):指蛋白質中共價連線的氨基酸殘基的排列順序。蛋白質二級結構(protein在蛋白質分子中的局布區域內氨基酸殘基的有規則的排列。常見的有二級結構有α-螺旋和β-摺疊。二級結構是透過骨架上的羰基和醯胺基團之間形成的氫鍵維持的。
蛋白質三級結構(protein tertiary structure): 蛋白質分子處於它的天然摺疊狀態的三維構象。三級結構是在二級結構的基礎上進一步盤繞,摺疊形成的。三級結構主要是靠氨基酸側鏈之間的疏水相互作用,氫鍵,範德華力和鹽鍵(離子鍵)維持的。此外共價二硫鍵在穩定某些蛋白質的構象方面也起著重要作用。
蛋白質四級結構(protein quaternary structure):多亞基蛋白質的三維結構。實際上是具有三級結構多肽(亞基)以適當方式聚合所呈現的三維結構。
超二級結構(super-secondary structure):也稱為基元(motif).在蛋白質中,特別是球蛋白中,經常可以看到由若干相鄰的二級結構單元組合在一起,彼此相互作用,形成有規則的,在空間上能辨認的二級結構組合體。
結構域(domain):在蛋白質的三級結構內的獨立摺疊單元。結構域通常都是幾個超二級結構單元的組合。
二硫鍵(disulfide bond):透過兩個(半胱氨酸)巰基的氧化形成的共價鍵。二硫鍵在穩定某些蛋白的三維結構上起著重要的作用。
範德華力(van der Waals force):中性原子之間透過瞬間靜電相互作用產生的一弱的分子之間的力。當兩個原子之間的距離為它們範德華力半徑之和時,範德華力最強。強的範德華力的排斥作用可防止原子相互靠近。
α-螺旋(α-heliv):蛋白質中常見的二級結構,肽鏈主鏈繞假想的中心軸盤繞成螺旋狀,一般都是右手螺旋結構,螺旋是靠鏈內氫鍵維持的。每個氨基酸殘基(第n個)的羰基與多肽鏈C端方向的第4個殘基(第4+n個)的醯胺氮形成氫鍵。在古典的右手α-螺旋結構中,螺距為0.54nm,每一圈含有3.6個氨基酸殘基,每個殘基沿著螺旋的長軸上升0.15nm.
β-摺疊(β-sheet): 蛋白質中常見的二級結構,是由伸展的多肽鏈組成的。摺疊片的構象是透過一個肽鍵的羰基氧和位於同一個肽鏈的另一個醯氨氫之間形成的氫鍵維持的。氫鍵幾乎都垂直伸展的肽鏈,這些肽鏈可以是平行排列(由N到C方向)或者是反平行排列(肽鏈反向排列)。
β-轉角(β-turn):也是多肽鏈中常見的二級結構,是連線蛋白質分子中的二級結構(α-螺旋和β-摺疊),使肽鏈走向改變的一種非重複多肽區,一般含有2~16個氨基酸殘基。含有5個以上的氨基酸殘基的轉角又常稱為環(loop)。常見的轉角含有4個氨基酸殘基有兩種型別:轉角I的特點是:第一個氨基酸殘基羰基氧與第四個殘基的醯氨氮之間形成氫鍵;轉角Ⅱ的第三個殘基往往是甘氨酸。這兩種轉角中的第二個殘侉大都是脯氨酸。
一、 核酸的一級結構
核酸是由核苷酸聚合而成的生物大分子。組成DNA的脫氧核糖核苷酸主要是dAMP、dGMP、dCMP和dTMP,組成RNA的核糖核苷酸主要是AMP、GMP、CMP和UMP。核酸中的核苷酸以3’,5’磷酸二酯鍵構成無分支結構的線性分子。核酸鏈具有方向性,有兩個末端分別是5’末端與3’末端。5’末端含磷酸基團,3’末端含羥基。核酸鏈內的前一個核苷酸的3’羥基和下一個核苷酸的5’磷酸形成3’,5’磷酸二酯鍵,故核酸中的核苷酸被稱為核苷酸殘基。。通常將小於50個核苷酸殘基組成的核酸稱為寡核苷酸(oligonucleotide),大於50個核苷酸殘基稱為多核苷酸(polynucleotide)。
二、 DNA的空間結構
(一)DNA的二級結構
DNA二級結構即雙螺旋結構(double helix structure)。20世紀50年代初Chargaff等人分析多種生物DNA的鹼基組成發現的規則。
DNA雙螺旋模型的提出不僅揭示了遺傳資訊穩定傳遞中DNA半保留複製的機制,而且是分子生物學發展的里程碑。
DNA雙螺旋結構特點如下:①兩條DNA互補鏈反向平行。②由脫氧核糖和磷酸間隔相連而成的親水骨架在螺旋分子的外側,而疏水的鹼基對則在螺旋分子內部,鹼基平面與螺旋軸垂直,螺旋旋轉一週正好為10個鹼基對,螺距為3.4nm,這樣相鄰鹼基平面間隔為0.34nm並有一個36嫻募薪恰"跠NA雙螺旋的表面存在一個大溝(major groove)和一個小溝(minor groove),蛋白質分子透過這兩個溝與鹼基相識別。④兩條DNA鏈依靠彼此鹼基之間形成的氫鍵而結合在一起。根據鹼基結構特徵,只能形成嘌呤與嘧啶配對,即A與T相配對,形成2個氫鍵;G與C相配對,形成3個氫鍵。因此G與C之間的連線較為穩定。⑤DNA雙螺旋結構比較穩定。維持這種穩定性主要靠鹼基對之間的氫鍵以及鹼基的堆集力(stacking force)。
生理條件下,DNA雙螺旋大多以B型形式存在。右手雙螺旋DNA除B型外還有A型、C型、D型、E型。此外還發現左手雙螺旋Z型DNA。Z型DNA是1979年Rich等在研究人工合成的CGCGCG的晶體結構時發現的。Z-DNA的特點是兩條反向平行的多核苷酸互補鏈組成的螺旋呈鋸齒形,其表面只有一條深溝,每旋轉一週是12個鹼基對。研究表明在生物體內的DNA分子中確實存在Z-DNA區域,其功能可能與基因表達的調控有關。DNA二級結構還存在三股螺旋DNA,三股螺旋DNA中通常是一條同型寡核苷酸與寡嘧啶核苷酸-寡嘌呤核苷酸雙螺旋的大溝結合,三股螺旋中的第三股可以來自分子間,也可以來自分子內。三股螺旋DNA存在於基因調控區和其他重要區域,因此具有重要生理意義。
(二) DNA三級結構——超螺旋結構
DNA三級結構是指DNA鏈進一步扭曲盤旋形成超螺旋結構。生物體內有些DNA是以雙鏈環狀DNA形式存在,如有些病毒DNA,某些噬菌體DNA,細菌染色體與細菌中質粒DNA,真核細胞中的線粒體DNA、葉綠體DNA都是環狀的。環狀DNA分子可以是共價閉合環,即環上沒有缺口,也可以是缺口環,環上有一個或多個缺口。在DNA雙螺旋結構基礎上,共價閉合環DNA(covalently close circular DNA)可以進一步扭曲形成超螺旋形(super helical form)。根據螺旋的方向可分為正超螺旋和負超螺旋。正超螺旋使雙螺旋結構更緊密,雙螺旋圈數增加,而負超螺旋可以減少雙螺旋的圈數。幾乎所有天然DNA中都存在負超螺旋結構。
(三) DNA的四級結構——DNA與蛋白質形成複合物
在真核生物中其基因組DNA要比原核生物大得多,如原核生物大腸桿菌的DNA約為4.7×103kb,而人的基因組DNA約為3×106 kb,因此真核生物基因組DNA通常與蛋白質結合,經過多層次反覆摺疊,壓縮近10 000倍後,以染色體形式存在於平均直徑為5μm的細胞核中。線性雙螺旋DNA摺疊的第一層次是形成核小體(nucleosome)。猶如一串念珠, 核小體由直徑為11nm×5.5nm的組蛋白核心和盤繞在核心上的DNA構成。核心由組蛋白H2A、H2B、H3和H4各2分子組成,為八聚體,146 bp長的 DNA以左手螺旋盤繞在組蛋白的核心1.75圈,形成核小體的核心顆粒,各核心顆粒間有一個連線區,約有60 bp雙螺旋DNA和1個分子組蛋白H1構成。平均每個核小體重複單位約佔DNA 200 bp。DNA組裝成核小體其長度約縮短7倍。在此基礎上核小體又進一步盤繞摺疊,最後形成染色體。
(四)DNA結構的多型性
Watson和Crick所推匯出來的DNA結構在生物學研究中有深遠意義。他們是以在生理鹽溶液中抽出的DNA纖維在92%相對溫度下進行X-射線衍射圖譜為依據進行推設的。在這一條件下得出的DNA稱B構象。實際上在溶液中的DNA的確呈這一構象,這也是最常見的DNA構象。但是,研究表明DNA的結構是動態的。在以鈉、鉀或銫作反離子,相對溫度為75%時,DNA分子的X-射線衍射圖給出的是A構象。這一構象不僅出現於脫水DNA中,還出現在RNA分子中的雙螺旋區域的DNA-RNA雜交分子中。如果以鋰作反離子,相對溫度進一步降為66%,則DNA是C構象。但是這一構象僅在實驗室中觀察到,還未在生物體中發現。這些DNA分子中G-C鹼基對較少,這些分子將取D和E構象。這些研究表明DNA的分子結構不是一成不變的,在不同的條件下可以有所不同。但是,這些不同構象的DNA都有共同的一點,即它們都是右手雙螺旋;兩條反向平行的核苷酸鏈透過Watson-Crick鹼基配對結合在一起;鏈的重複單位是單核苷酸;這些螺旋中都有兩個螺旋溝,分為大溝與小溝,只是它們的寬窄和深淺程度有所不同。
但是,Wang和Rich等人在研究人工合成的CGCGCG單晶的X-射線衍射圖譜時分別發現這種六聚體的構象與上面講到的完全不同。它是左手雙螺旋,在主鏈中各個磷酸根呈鋸齒狀排列,有如“之”字形一樣,因此叫它Z構象(英文字Zigzag的第一個字母)。還有,這一構象中的重複單位是二核苷酸而不是單核苷酸;而且Z-DNA只有一個螺旋溝,它相當於B構象中的小溝,它狹而深,大溝則不復存在。
立即就有幾個問題被提了出來:這種結構是怎樣生成的?這一結構在天然狀態下存在嗎?它有什麼生物學意義?
研究表明,Z-DNA的形成是DNA單鏈上出現嘌呤與嘧啶交替排列所成的。比如CGCGCGCG或者CACACACA。這種鹼基排列方式會造成核苷酸的糖苷鍵的順式和反式構象的交替存在。當鹼基與糖構成反式結構時,它們之間離得遠;而當它們成順式時,就彼此接近。嘧啶糖苷鍵通常是反式的,而嘌呤糖苷酸鍵既可成順式的也可成反式的。而在Z-DNA中,嘌呤鹼是順式的。這樣,在Z-DNA中嘧啶的糖苷鏈離開小溝向外挑出,而嘌呤上的糖苷鍵則彎向小溝。嘌呤與嘧啶的交替排列就使得糖苷鍵也是順式與反式交替排列,從而使Z-DNA主鏈呈鋸齒狀或“之”字形。
人們相信,並用實驗證明細胞DNA分子中確實存在有Z-DNA區。而且,細胞內有一些因素可以促使B-DNA轉變為Z-DNA。比如,胞嘧啶第五位碳原子的甲基化,在甲基周圍形成區域性的疏水區。這一區域擴伸到B-DNA的大溝中,使B-DNA不穩定而轉變為Z-DNA。這種C5甲基化現象在真核生物中是常見的。因此在生物B構象的DNA中某些區段具有Z-DNA構象是可能的。DNA真是一個構象可變動態分子。
Z-DNA有會麼生物學意義呢?應當指出Z-DNA的形成通常在熱力學上是不利的。因為Z-DNA中帶負電荷的磷酸根距離太近了,這會產物靜電排斥。但是,DNA鏈的區域性不穩定區的存在就成為潛在的解鏈位點。DNA解螺旋卻是DNA複製和轉錄等過程中必要的環節,因此認為這一結構位點與基因調節有關。比如SV40增強子區中就有這種結構,又如鼠類微小病毒DNS複製區起始點附近有GC交替排列序列。此外,DNA螺旋上溝的特徵在其資訊表達過程中起關鍵作用。調控蛋白都是透過其分子上特定的氨基酸側鏈與DNA雙螺旋溝中的鹼基對一側的氫原子供體或受體相互作用,形成氫鍵從而識別DNA上的遺傳資訊的。大溝所帶的遺傳資訊比小溝多。溝的寬窄和深淺也直接影響到調控蛋白質對DNA資訊的識別。Z-DNA中大溝消失,小溝狹而深,使調探蛋白識別方式也發生變化。這些都暗示Z-DNA的存在不僅僅是由於DNA中出現嘌呤-啶嘧交替排列之結果,也一定是在漫漫的進化長河中對DNA序列與結構不斷調整與篩選的結果,有其內在而深刻的含意,只是人們還未充分認識而已。
DNA構象的可變性,或者說DNA二級結構的多型性的發現拓寬了人們的視野。原來,生物體中最為穩定的遺傳物質也可以採用不同的姿態來實現其豐富多采的生物的奧妙,也讓人們在這一領域中探索和攀越時減少疲勞和厭倦,樂而忘返,從而有更多更新的發現。
多年來,DNA結構的研究手段主要是X射線衍線技術,其結果是透過間接觀測多個DNA分子有關結構引數的平均值而獲得的。同時,這項技術的樣品分析條件使被測DNA分子與天然狀態相差甚遠。因此,在反映DNA結構真實性方面這種方法存在著缺陷。1989年,應用掃描隧道顯微鏡(STM)研究DNA結構克服了上述技術的缺陷。這種先進的顯微技術,不僅可將被測物放大500萬倍,且能直接觀測接近天然條件下單個DNA分子的結構細節。應該說它所取得的DNA結構資料更具有"權威性"。表1-6是STM測到的B-DNA結構引數及其與X射線衍線資料的比較結果。STM研究還證實了d(CG)重複序列的寡核苷酸片段為Z-DNA結構的事實。STM技術的應用是DNA結構研究中的重要進展,可望在探索DNA結構的某些未知點上展示巨大潛力。