平行線的性質
1.兩直線平行,同位角相等。
2.兩直線平行,內錯角相等。
3.兩直線平行,同旁內角互補。
4.在同一平面內的兩線平行並且不在一條直線上的直線。
平行線:
1. 平行線的定義 在同一平面內,不相交的兩條直線叫做平行線。
AB平行於CD ,AB‖CD
2. 平行公理:過直線外一點有且只有一條直線與已知直線平行。
3. 平行公理的推論(平行的傳遞性):
如果兩條直線都和第三條直線平行,那麼兩條直線也互相平行。
∵a‖c,c ‖b
∴a‖b
平行線的判定:
1. 兩條直線被第三條所截,如果同位角相等,那麼這兩條直線平行。
簡單說成:同位角相等,兩直線平行。
2. 兩條直線被第三條所截,如果內錯角相等,那麼這兩條直線平行。
簡單說成:內錯角相等,兩直線平行。
3 . 兩條直線被第三條所截,如果同旁內角互補,那麼這兩條直線平行。
簡單說成:同旁內角互補,兩直線平行。
平行線的性質:
1. 兩條平行線被第三條直線所截,同位角相等.
簡單說成:兩直線平行,同位角相等。
2. 兩條平行線被地三條直線所截,同旁內角互補.
簡單說成:兩直線平行,同旁內角互補 。
3 . 兩條平行線被第三條直線所截,內錯角相等.
簡單說成:兩直線平行,內錯角相等。
兩個角的數量關係兩直線的位置關係:
垂直於同一直線的兩條直線互相平行
平行線間的距離,處處相等。
如果兩個角的兩邊分別平行,那麼這兩個角相等或互補
平行線的性質
1.兩直線平行,同位角相等。
2.兩直線平行,內錯角相等。
3.兩直線平行,同旁內角互補。
4.在同一平面內的兩線平行並且不在一條直線上的直線。
平行線:
1. 平行線的定義 在同一平面內,不相交的兩條直線叫做平行線。
AB平行於CD ,AB‖CD
2. 平行公理:過直線外一點有且只有一條直線與已知直線平行。
3. 平行公理的推論(平行的傳遞性):
如果兩條直線都和第三條直線平行,那麼兩條直線也互相平行。
∵a‖c,c ‖b
∴a‖b
平行線的判定:
1. 兩條直線被第三條所截,如果同位角相等,那麼這兩條直線平行。
簡單說成:同位角相等,兩直線平行。
2. 兩條直線被第三條所截,如果內錯角相等,那麼這兩條直線平行。
簡單說成:內錯角相等,兩直線平行。
3 . 兩條直線被第三條所截,如果同旁內角互補,那麼這兩條直線平行。
簡單說成:同旁內角互補,兩直線平行。
平行線的性質:
1. 兩條平行線被第三條直線所截,同位角相等.
簡單說成:兩直線平行,同位角相等。
2. 兩條平行線被地三條直線所截,同旁內角互補.
簡單說成:兩直線平行,同旁內角互補 。
3 . 兩條平行線被第三條直線所截,內錯角相等.
簡單說成:兩直線平行,內錯角相等。
兩個角的數量關係兩直線的位置關係:
垂直於同一直線的兩條直線互相平行
平行線間的距離,處處相等。
如果兩個角的兩邊分別平行,那麼這兩個角相等或互補