函式(function)的現代定義是給定一個數集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數集B,假設B中的元素為y,則y與x之間的等量關係可以用y=f(x)表示,函式概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函式關係的本質特徵。
在萊布尼茲之前,十七世紀伽俐略在《兩門新科學》一書中,幾乎全部包含函式或稱為變數關係的這一概念,用文字和比例的語言表達函式的關係。1637年前後笛卡爾在他的解析幾何中,已注意到一個變數對另一個變數的依賴關係,但因當時尚未意識到要提煉函式概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分時還沒有人明確函式的一般意義,大部分函式是被當作曲線來研究的。
高中階段學好函式非常重要,他也是學習現代科學理論的基礎。比如大學的三大課,高等數學、線性代數和機率論與數理統計,都離不開函式概念的深刻理解和把握。
以高等數學為例,微積分(Calculus),是高等數學中研究函式的微分(Differentiation)、積分(Integration)以及有關概念和應用的數學分支。它是數學的一個基礎學科,內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
函式(function)的現代定義是給定一個數集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數集B,假設B中的元素為y,則y與x之間的等量關係可以用y=f(x)表示,函式概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函式關係的本質特徵。
在萊布尼茲之前,十七世紀伽俐略在《兩門新科學》一書中,幾乎全部包含函式或稱為變數關係的這一概念,用文字和比例的語言表達函式的關係。1637年前後笛卡爾在他的解析幾何中,已注意到一個變數對另一個變數的依賴關係,但因當時尚未意識到要提煉函式概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分時還沒有人明確函式的一般意義,大部分函式是被當作曲線來研究的。
高中階段學好函式非常重要,他也是學習現代科學理論的基礎。比如大學的三大課,高等數學、線性代數和機率論與數理統計,都離不開函式概念的深刻理解和把握。
以高等數學為例,微積分(Calculus),是高等數學中研究函式的微分(Differentiation)、積分(Integration)以及有關概念和應用的數學分支。它是數學的一個基礎學科,內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。