負數的運算包括加法法則,乘法法則,除法法則,開方法則,運算律,i的乘方法則等。具體運算方法如下:
1.加法法則
複數的加法法則:設z1=a+bi,z2=c+di是任意兩個複數。兩者和的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。兩個複數的和依然是複數。即
2.乘法法則
複數的乘法法則:把兩個複數相乘,類似兩個多項式相乘,結果中i2= -1,把實部與虛部分別合併。兩個複數的積仍然是一個複數。即
3.除法法則
複數除法定義:滿足
的複數
叫複數a+bi除以複數c+di的商。
運算方法:將分子和分母同時乘以分母的共軛複數,再用乘法法則運算,
即
4.開方法則
若zn=r(cosθ+isinθ),則
(k=0,1,2,3…n-1)
5.運算律
加法交換律:z1+z2=z2+z1
乘法交換律:z1×z2=z2×z1
加法結合律:(z1+z2)+z3=z1+(z2+z3)
乘法結合律:(z1×z2)×z3=z1×(z2×z3)
分配律:z1×(z2+z3)=z1×z2+z1×z3
6.i的乘方法則
i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=1(其中n∈Z)
7.棣莫佛定理
對於複數z=r(cosθ+isinθ),有z的n次冪
zn=rn[cos(nθ)+isin(nθ)] (其中n是正整數)
則
負數的運算包括加法法則,乘法法則,除法法則,開方法則,運算律,i的乘方法則等。具體運算方法如下:
1.加法法則
複數的加法法則:設z1=a+bi,z2=c+di是任意兩個複數。兩者和的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。兩個複數的和依然是複數。即
2.乘法法則
複數的乘法法則:把兩個複數相乘,類似兩個多項式相乘,結果中i2= -1,把實部與虛部分別合併。兩個複數的積仍然是一個複數。即
3.除法法則
複數除法定義:滿足
的複數
叫複數a+bi除以複數c+di的商。
運算方法:將分子和分母同時乘以分母的共軛複數,再用乘法法則運算,
即
4.開方法則
若zn=r(cosθ+isinθ),則
(k=0,1,2,3…n-1)
5.運算律
加法交換律:z1+z2=z2+z1
乘法交換律:z1×z2=z2×z1
加法結合律:(z1+z2)+z3=z1+(z2+z3)
乘法結合律:(z1×z2)×z3=z1×(z2×z3)
分配律:z1×(z2+z3)=z1×z2+z1×z3
6.i的乘方法則
i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=1(其中n∈Z)
7.棣莫佛定理
對於複數z=r(cosθ+isinθ),有z的n次冪
zn=rn[cos(nθ)+isin(nθ)] (其中n是正整數)
則