回覆列表
  • 1 # Hddxc

      示波器的作用是用來測量交流電或脈衝電流波的形狀的儀器,由電子管放大器、掃描振盪器、陰極射線管等組成。除觀測電流的波形外,還可以測定頻率、電壓強度等。凡可以變為電效應的週期性物理過程都可以用示波器進行觀測。  示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電訊號變換成看得見的影象,便於人們研究各種電現象的變化過程。示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。在被測訊號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測訊號的瞬時值的變化曲線。利用示波器能觀察各種不同訊號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓、電流、頻率、相位差、調幅度等等。  分類  按照訊號的不同分類  模擬示波器採用的是類比電路(示波管,其基礎是電子槍)電子槍向螢幕發射電子,發射的電子經聚焦形成電子束,並打到螢幕上。螢幕的內表面塗有熒光物質,這樣電子束打中的點就會發出光來。  數字示波器則是資料採集,A/D轉換,軟體程式設計等一系列的技術製造出來的高效能示波器。數字示波器的工作方式是透過模擬轉換器(ADC)把被測電壓轉換為數字資訊。數字示波器捕獲的是波形的一系列樣值,並對樣值進行儲存,儲存限度是判斷累計的樣值是否能描繪出波形為止,隨後,數字示波器重構波形。數字示波器可以分為數字儲存示波器(DSO),數字熒光示波器(DPO)和取樣示波器。  模擬示波器要提高頻寬,需要示波管、垂直放大和水平掃描全面推進。數字示波器要改善頻寬只需要提高前端的A/D轉換器的效能,對示波管和掃描電路沒有特殊要求。加上數字示波管能充分利用記憶、儲存和處理,以及多種觸發和超前觸發能力。廿世紀八十年代數字示波器異軍突起,成果累累,大有全面取代模擬示波器之勢,模擬示波器的確從前臺退到後臺。  按照結構和效能不同分類  ①普通示波器。電路結構簡單,頻帶較窄,掃描線性差,僅用於觀察波形。  ②多用示波器。頻帶較寬,掃描線性好,能對直流、低頻、高頻、超高頻訊號和脈衝訊號進行定量測試。藉助幅度校準器和時間校準器,測量的準確度可達±5%。  ③多線示波器。採用多束示波管,能在熒光屏上同時顯示兩個以上同頻訊號的波形,沒有時差,時序關係準確。  ④多蹤示波器。具有電子開關和門控電路的結構,可在單束示波管的熒光屏上同時顯示兩個以上同頻訊號的波形。但存在時差,時序關係不準確。  ⑤取樣示波器。採用取樣技術將高頻訊號轉換成模擬低頻訊號進行顯示,有效頻帶可達GHz級。  ⑥記憶示波器。採用儲存示波管或數字儲存技術,將單次電訊號瞬變過程、非週期現象和超低頻訊號長時間保留在示波管的熒光屏上或儲存在電路中,以供重複測試。  ⑦數字示波器。內部帶有微處理器,外部裝有數字顯示器,有的產品在示波管熒光屏上既可顯示波形,又可顯示字元。被測訊號經模一數變換器(A/D變換器)送入資料儲存器,透過鍵盤操作,可對捕獲的波形引數的資料,進行加、減、乘、除、求平均值、求平方根值、求均方根值等的運算,並顯示出答案數字。  基本構成  顯示電路  顯示電路包括示波管及其控制電路兩個部分。示波管是一種特殊的電子管,是示波器一個重要組成部分。示波管由電子槍、偏轉系統和熒光屏3個部分組成。  (1)電子槍  電子槍用於產生並形成高速、聚束的電子流,去轟擊熒光屏使之發光。它主要由燈絲F、陰極K、控制極G、第一陽極A1、第二陽極A2組成。除燈絲外,其餘電極的結構都為金屬圓筒,且它們的軸心都保持在同一軸線上。陰極被加熱後,可沿軸向發射電子;控制極相對陰極來說是負電位,改變電位可以改變透過控制極小孔的電子數目,也就是控制熒光屏上光點的亮度。為了提高屏上光點亮度,又不降低對電子束偏轉的靈敏度,現代示波管中,在偏轉系統和熒光屏之間還加上一個後加速電極A3。  第一陽極對陰極而言加有約幾百伏的正電壓。在第二陽極上加有一個比第一陽極更高的正電壓。穿過控制極小孔的電子束,在第一陽極和第二陽極高電位的作用下,得到加速,向熒光屏方向作高速運動。由於電荷的同性相斥,電子束會逐漸散開。透過第一陽極、第二陽極之間電場的聚焦作用,使電子重新聚集起來並交匯於一點。適當控制第一陽極和第二陽極之間電位差的大小,便能使焦點剛好落在熒光屏上,顯現一個光亮細小的圓點。改變第一陽極和第二陽極之間的電位差,可起調節光點聚焦的作用,這就是示波器的“聚焦”和“輔助聚焦”調節的原理。第三陽極是示波管錐體內部塗上一層石墨形成的,通常加有很高的電壓,它有三個作用:①使穿過偏轉系統以後的電子進一步加速,使電子有足夠的能量去轟擊熒光屏,以獲得足夠的亮度;②石墨層塗在整個錐體上,能起到遮蔽作用;③電子束轟擊熒光屏會產生二次電子,處於高電位的A3可吸收這些電子。  (2)偏轉系統  示波管的偏轉系統大都是靜電偏轉式,它由兩對相互垂直的平行金屬板組成,分別稱為水平偏轉板和垂直偏轉板。分別控制電子束在水平方向和垂直方向的運動。當電子在偏轉板之間運動時,如果偏轉板上沒有加電壓,偏轉板之間無電場,離開第二陽極後進入偏轉系統的電子將沿軸向運動,射向螢幕的中心。如果偏轉板上有電壓,偏轉板之間則有電場,進入偏轉系統的電子會在偏轉電場的作用下射向熒光屏的指定位置。  如果兩塊偏轉板互相平行,並且它們的電位差等於零,那麼透過偏轉板空間的,具有速度υ的電子束就會沿著原方向(設為軸線方向)運動,並打在熒光屏的座標原點上。如果兩塊偏轉板之間存在著恆定的電位差,則偏轉板間就形成一個電場,這個電場與電子的運動方向相垂直,於是電子就朝著電位比較高的偏轉板偏轉。這樣,在兩偏轉板之間的空間,電子就沿著拋物線在這一點上做切線運動。最後,電子降落在熒光屏上的A點,這個A點距離熒光屏原點(0)有一段距離,這段距離稱為偏轉量,用y表示。偏轉量y與偏轉板上所加的電壓Vy成正比。同理,在水平偏轉板上加有直流電壓時,也發生類似情況,只是光點在水平方向上偏轉。  (3)熒光屏  熒光屏位於示波管的終端,它的作用是將偏轉後的電子束顯示出來,以便觀察。在示波器的熒光屏內壁塗有一層發光物質,因而,熒光屏上受到高速電子衝擊的地點就顯現出熒光。此時光點的亮度決定於電子束的數目、密度及其速度。改變控制極的電壓時,電子束中電子的數目將隨之改變,光點亮度也就改變。在使用示波器時,不宜讓很亮的光點固定出現在示波管熒光屏一個位置上,否則該點熒光物質將因長期受電子衝擊而燒壞,從而失去發光能力。  塗有不同熒光物質的熒光屏,在受電子衝擊時將顯示出不同的顏色和不同的餘輝時間,通常供觀察一般訊號波形用的是發綠光的,屬中餘輝示波管,供觀察非週期性及低頻訊號用的是發橙黃色光的,屬長餘輝示波管;供照相用的示波器中,一般都採用發藍色的短餘輝示波管。  Y軸放大電路  由於示波管的偏轉靈敏度甚低,例如常用的示波管13SJ38J型,其垂直偏轉靈敏度為0.86mm/V(約12V電壓產生1cm的偏轉量),所以一般的被測訊號電壓都要先經過垂直放大電路的放大,再加到示波管的垂直偏轉板上,以得到垂直方向的適當大小的圖形。  X軸放大電路  由於示波管水平方向的偏轉靈敏度也很低,所以接入示波管水平偏轉板的電壓(鋸齒波電壓或其它電壓)也要先經過水平放大電路的放大以後,再加到示波管的水平偏轉板上,以得到水平方向適當大小的圖形。  掃描同步電路  掃描電路產生一個鋸齒波電壓。該鋸齒波電壓的頻率能在一定的範圍內連續可調。鋸齒波電壓的作用是使示波管陰極發出的電子束在熒光屏上形成周期性的、與時間成正比的水平位移,即形成時間基線。這樣,才能把加在垂直方向的被測訊號按時間的變化波形展現在熒光屏上。  電源供給電路  電源供給電路:供給垂直與水平放大電路、掃描與同步電路以及示波管與控制電路所需的負高壓、燈絲電壓等。  由示波器的原理功能方框圖可見,被測訊號電壓加到示波器的Y軸輸入端,經垂直放大電路加於示波管的垂直偏轉板。示波管的水平偏轉電壓,雖然多數情況都採用鋸齒電壓(用於觀察波形時),但有時也採用其它的外加電壓(用於測量頻率、相位差等時),因此在水平放大電路輸入端有一個水平訊號選擇開關,以便按照需要選用示波器內部的鋸齒波電壓,或選用外加在X軸輸入端上的其它電壓來作為水平偏轉電壓。  此外,為了使熒光屏上顯示的圖形保持穩定,要求鋸齒波電壓訊號的頻率和被測訊號的頻率保持同步。這樣,不僅要求鋸齒波電壓的頻率能連續調節,而且在產生鋸齒波的電路上還要輸入一個同步訊號。這樣,對於只能產生連續掃描(即產生週而復始、連續不斷的鋸齒波)一種狀態的簡易示波器(如中國產SB10型等示波器)而言,需要在其掃描電路上輸入一個與被觀察訊號頻率相關的同步訊號,以牽制鋸齒波的振盪頻率。對於具有等待掃描功能(即平時不產生鋸齒波,當被測訊號來到時才產生一個鋸齒波,進行一次掃描)的示波器(如中國產ST-16型示波器、SR-8型雙蹤示波器等)為了適應各種需要,同步(或觸發)訊號可透過同步或觸發訊號選擇開關來選擇,通常來源有3個:①從垂直放大電路引來被測訊號作為同步(或觸發)訊號,此訊號稱為“內同步”(或“內觸發”)訊號;②引入某種相關的外加訊號為同步(或觸發)訊號,此訊號稱為“外同步”(或“外觸發”)訊號,該訊號加在外同步(或外觸發)輸入端;③有些示波器的同步訊號選擇開關還有一檔“電源同步”,是由220V,50Hz電源電壓,透過變壓器次級降壓後作為同步訊號。  基本原理  波形顯示  由示波管的原理可知,一個直流電壓加到一對偏轉板上時,將使光點在熒光屏上產生一個固定位移,該位移的大小與所加直流電壓成正比。如果分別將兩個直流電壓同時加到垂直和水平兩對偏轉板上,則熒光屏上的光點位置就由兩個方向的位移所共同決定。  雙線示波  在電子實踐技術過程中,常常需要同時觀察兩種(或兩種以上)訊號隨時間變化的過程。並對這些不同訊號進行電量的測試和比較。為了達到這個目的,人們在應用普通示波器原理的基礎上,採用了以下兩種同時顯示多個波形的方法:一種是雙線(或多線)示波法;另一種是雙蹤(或多蹤)示波法。應用這兩種方法制造出來的示波器分別稱為雙線(或多線)示波器和雙蹤(或多蹤)示波器。  雙蹤示波  雙蹤(或多蹤)示波是在單線示波器的基礎上,增設一個專用電子開關,用它來實現兩種(或多種)波形的分別顯示。由於實現雙蹤(或多蹤)示波比實現雙線(或多線)示波來得簡單,不需要使用結構複雜、價格昂貴的“雙腔”或“多腔”示波管,所以雙蹤(或多蹤)示波獲得了普遍的應用。  儀器分類  示波器可以分為模擬示波器和數字示波器,對於大多數的電子應用,無論模擬示波器和數字示波器都是可以勝任的,只是對於一些特定的應用,由於模擬示波器和數字示波器所具備的不同特性,才會出現適合和不適合的地方。  模擬式  模擬示波器的工作方式是直接測量訊號電壓,並且透過從左到右穿過示波器螢幕的電子束在垂直方向描繪電壓。  數字式  數字示波器的工作方式是透過模擬轉換器(ADC)把被測電壓轉換為數字資訊。數字示波器捕獲的是波形的一系列樣值,並對樣值進行儲存,儲存限度是判斷累計的樣值是否能描繪出波形為止,隨後,數字示波器重構波形。  數字示波器可以分為數字儲存示波器(DSO),數字熒光示波器(DPO)和取樣示波器。  模擬示波器要提高頻寬,需要示波管、垂直放大和水平掃描全面推進。數字示波器要改善頻寬只需要提高前端的A/D轉換器的效能,對示波管和掃描電路沒有特殊要求。加上數字示波管能充分利用記憶、儲存和處理,以及多種觸發和超前觸發能力。廿世紀八十年代數字示波器異軍突起,成果累累,大有全面取代模擬示波器之勢,模擬示波器的確從前臺退到後臺。  測試應用  電壓的測量  利用示波器所做的任何測量,都是歸結為對電壓的測量。示波器可以測量各種波形的電壓幅度,既可以測量直流電壓和正弦電壓,又可以測量脈衝或非正弦電壓的幅度。更有用的是它可以測量一個脈衝電壓波形各部分的電壓幅值,如上衝量或頂部下降量等。這是其他任何電壓測量儀器都不能比擬的。  1.直接測量法  所謂直接測量法,就是直接從螢幕上量出被測電壓波形的高度,然後換算成電壓值。定量測試電壓時,一般把Y軸靈敏度開關的微調旋鈕轉至“校準”位置上,這樣,就可以從“V/div”的指示值和被測訊號佔取的縱軸座標值直接計算被測電壓值。所以,直接測量法又稱為標尺法。  (1)交流電壓的測量  (2)直流電壓的測量  .比較測量法  比較測量法就是用一已知的標準電壓波形與被測電壓波形進行比較求得被測電壓值。  將被測電壓Vx輸入示波器的Y軸通道,調節Y軸靈敏度選擇開關“V/div”及其微調旋鈕,使熒光屏顯示出便於測量的高度Hx並做好記錄,且“V/div”開關及微調旋鈕位置保持不變。去掉被測電壓,把一個已知的可調標準電壓Vs輸入Y軸,調節標準電壓的輸出幅度,使它顯示與被測電壓相同的幅度。此時,標準電壓的輸出幅度等於被測電壓的幅度。比較法測量電壓可避免垂直系統引起和誤差,因而提高了測量精度。  時間的測量  示波器時基能產生與時間呈線性關係的掃描線,因而可以用熒光屏的水平刻度來測量波形的時間引數,如週期性訊號的重複週期、脈衝訊號的寬度、時間間隔、上升時間(前沿)和下降時間(後沿)、兩個訊號的時間差等等。  將示波器的掃速開關“t/div”的“微調”裝置轉至校準位置時,顯示的波形在水平方向刻度所代表的時間可按“t/div”開關的指示值直讀計算,從而較準確地求出被測訊號的時間引數。  相位的測量  利用示波器測量兩個正弦電壓之間的相位差具有實用意義,用計數器可以測量頻率和時間,但不能直接測量正弦電壓之間的相位關係。利用示波器測量相位的方法很多,常用的簡單方法。  1.雙蹤法  2.李薩如圖形法測相位  頻率的測量  1.週期法  2.李薩育圖形法測頻率

  • 中秋節和大豐收的關聯?
  • 怎樣才能獲得一張“發”?