早期三角學不是一門獨立的學科,而是依附於天文學,是天文觀測結果推算的一種方法,因而最先發展起來的是球面三角學.希臘、印度、阿拉伯數學中都有三角學的內容,可大都是天文觀測的副產品.例如,古希臘門納勞斯(Menelaus of Alexandria,公元100年左右)著《球面學》,提出了三角學的基礎問題和基本概念,特別是提出了球面三角學的門納勞斯定理;50年後,另一個古希臘學者托勒密(Ptolemy)著《天文學大成》,初步發展了三角學.而在公元499年,印度數學家阿耶波多(ryabhata I)也表述出古代印度的三角學思想;其後的瓦拉哈米希拉(Varahamihira,約505~587年)最早引入正弦概念,並給出最早的正弦表;公元10世紀的一些阿拉伯學者進一步探討了三角學.當然,所有這些工作都是天文學研究的組成部分.直到納西爾丁(Nasir ed-Din al Tusi,1201~1274年)的《橫截線原理書》才開始使三角學脫離天文學,成為純粹數學的一個獨立分支.而在歐洲,最早將三角學從天文學獨立出來的數學家是德華人雷格蒙塔努斯(J Regiomontanus,1436~1476年)。
名稱定義
研究平面三角形和球面三角形邊角關係的數學學科。三角學是以研究三角形的邊和角的關係為基礎,應用於測量為目的,同時也研究三角函式的性質及其應用的一門學科。
[編輯本段]三角學的起源
三角學起源於古希臘。為了預報天體執行路線、計算日曆、航海等需要,古希臘人已研究球面三角形的邊角關係,掌握了球面三角形兩邊之和大於第三邊,球面三角形內角之和大於兩個直角,等邊對等角等定理。印度人和阿拉伯人對三角學也有研究和推進,但主要是應用在天文學方面。15、16世紀三角學的研究轉入平面三角,以達到測量上應用的目的。16世紀法國數學家韋達系統地研究了平面三角。他出版了應用於三角形的數學定律的書。此後,平面三角從天文學中分離出來,成了一個獨立的分支。平面三角學的內容主要有三角函式、解三角形和三角方程。
三角測量在中國也很早出現,公元前一百多年的《周髀算經》就有較詳細的說明,例如它的首章記錄“周公曰,大哉言數,請問用矩之道。商高曰,平矩以正繩,偃矩以望高,復矩以測深,臥矩以知遠。”(商高說的矩就是今天工人用的兩邊互相垂直的曲尺,商高說的大意是將曲尺置於不同的位置可以測目標物的高度、深度與廣度)1世紀時的《九章算術》中有專門研究測量問題的篇章.
[編輯本段]三角學的歷史
早期三角學不是一門獨立的學科,而是依附於天文學,是天文觀測結果推算的一種方法,因而最先發展起來的是球面三角學.希臘、印度、阿拉伯數學中都有三角學的內容,可大都是天文觀測的副產品.例如,古希臘門納勞斯(Menelaus of Alexandria,公元100年左右)著《球面學》,提出了三角學的基礎問題和基本概念,特別是提出了球面三角學的門納勞斯定理;50年後,另一個古希臘學者托勒密(Ptolemy)著《天文學大成》,初步發展了三角學.而在公元499年,印度數學家阿耶波多(ryabhata I)也表述出古代印度的三角學思想;其後的瓦拉哈米希拉(Varahamihira,約505~587年)最早引入正弦概念,並給出最早的正弦表;公元10世紀的一些阿拉伯學者進一步探討了三角學.當然,所有這些工作都是天文學研究的組成部分.直到納西爾丁(Nasir ed-Din al Tusi,1201~1274年)的《橫截線原理書》才開始使三角學脫離天文學,成為純粹數學的一個獨立分支.而在歐洲,最早將三角學從天文學獨立出來的數學家是德華人雷格蒙塔努斯(J Regiomontanus,1436~1476年)。