回覆列表
-
1 # 使用者2149618505464
-
2 # 使用者5540256312630
某一個恆星在準備滅亡,它的核心在自身重力作用下迅速收縮,崩塌並劇烈爆炸。當核心中的所有物質都變成中子時,收縮過程立即停止,並被壓縮成一個緊湊的恆星,這也壓縮了內部的空間和時間。
但在黑洞的情況下,即使中子之間的斥力也不能被阻擋,因為恆星核心的質量太大,收縮過程會無限期地進行。中子本身在引力的吸引下被粉碎成粉末,留下一種無法想象的緻密物質。由於高質量的重力,任何靠近它的物體都會被它吸進。
擴充套件資料:
黑洞不能被直接觀察到,但是它們的存在和質量可以被間接地知道,它們對其他事物的影響也可以被觀察到。利用物體被吸收前的高熱和伽馬射線所發出的“邊緣資訊”,可以得到黑洞存在的資訊。由此推斷,黑洞的存在也可以透過間接觀測恆星或星際雲的軌道來獲得。
因為黑洞的密度很高,根據這個公式,可以知道密度=質量/體積。為了使黑洞的密度無窮大,使黑洞的質量不變,這就意味著黑洞的體積必須無窮小,才能成為黑洞。黑洞是一些恆星“滅亡”後形成的死星。它們有很大的質量和很小的體積。
“黑洞”很容易讓人望文生義地想象成一個“大黑窟窿”,其實不然。所謂“黑洞”,就是這樣一種天體:它的引力場是如此之強,就連光也不能逃脫出來。根據廣義相對論,引力場將使時空彎曲。當恆星的體積很大時,它的引力場對時空幾乎沒什麼影響,從恆星表面上某一點發的光可以朝任何方向沿直線射出。而恆星的半徑越小,它對周圍的時空彎曲作用就越大,朝某些角度發出的光就將沿彎曲空間返回恆星表面。等恆星的半徑小到一特定值(天文學上叫“史瓦西半徑”)時,就連垂直表面發射的光都被捕獲了。到這時,恆星就變成了黑洞。說它“黑”,是指它就像宇宙中的無底洞,任何物質一旦掉進去,“似乎”就再不能逃出。實際上黑洞真正是“隱形”的,等一會兒我們會講到。那麼,黑洞是怎樣形成的呢?其實,跟白矮星和中子星一樣,黑洞很可能也是由恆星演化而來的。我們曾經比較詳細地介紹了白矮星和中子星形成的過程。當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料(氫),由中心產生的能量已經不多了。這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量。所以在外殼的重壓之下,核心開始坍縮,直到最後形成體積小、密度大的星體,重新有能力與壓力平衡。質量小一些的恆星主要演化成白矮星,質量比較大的恆星則有可能形成中子星。而根據科學家的計算,中子星的總質量不能大於三倍太陽的質量。如果超過了這個值,那麼將再沒有什麼力能與自身重力相抗衡了,從而引發另一次大坍縮。這次,根據科學家的猜想,物質將不可阻擋地向著中心點進軍,直至成為一個體積趨於零、密度趨向無限大的“點”。而當它的半徑一旦收縮到一定程度(史瓦西半徑),正象我們上面介紹的那樣,巨大的引力就使得即使光也無法向外射出,從而切斷了恆星與外界的一切聯絡——“黑洞”誕生了。與別的天體相比,黑洞是顯得太特殊了。例如,黑洞有“隱身術”,人們無法直接觀察到它,連科學家都只能對它內部結構提出各種猜想。那麼,黑洞是怎麼把自己隱藏起來的呢?答案就是——彎曲的空間。我們都知道,光是沿直線傳播的。這是一個最基本的常識。可是根據廣義相對論,空間會在引力場作用下彎曲。這時候,光雖然仍然沿任意兩點間的最短距離傳播,但走的已經不是直線,而是曲線。形象地講,好像光本來是要走直線的,只不過強大的引力把它拉得偏離了原來的方向。在地球上,由於引力場作用很小,這種彎曲是微乎其微的。而在黑洞周圍,空間的這種變形非常大。這樣,即使是被黑洞擋著的恆星發出的光,雖然有一部分會落入黑洞中消失,可另一部分光線會透過彎曲的空間中繞過黑洞而到達地球。所以,我們可以毫不費力地觀察到黑洞背面的星空,就像黑洞不存在一樣,這就是黑洞的隱身術。更有趣的是,有些恆星不僅是朝著地球發出的光能直接到達地球,它朝其它方向發射的光也可能被附近的黑洞的強引力折射而能到達地球。這樣我們不僅能看見這顆恆星的“臉”,還同時看到它的側面、甚至後背!“黑洞”無疑是本世紀最具有挑戰性、也最讓人激動的天文學說之一。許多科學家正在為揭開它的神秘面紗而辛勤工作著,新的理論也不斷地提出。不過,這些當代天體物理學的最新成果不是在這裡三言兩語能說清楚的。有興趣的朋友可以去參考專門的論著。