三角形一定有內切圓,其他的圖形不一定有內切圓(一般情況下,n邊形無內切圓,但也有例外,如對邊之和相等的四邊形有內切圓。),且內切圓圓心定在三角形內部。在三角形中,三個角的角平分線的交點是內切圓的圓心,圓心到三角形各個邊的垂線段相等。
與三角形三邊都相切的圓叫做三角形的內切圓,圓心叫做三角形的內心,三角形叫做圓的外切三角形。三角形的內心是三角形三條角平分線的交點。
在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一週所形成的封閉曲線叫做圓。圓有無數條對稱軸。在同一平面內,到定點的距離等於定長的點的集合叫做圓。圓可以表示為集合M||MO|=r,圓的標準方程是(x - a) ² + (y - b) ² = r ²。其中,o是圓心,r 是半徑。圓形是一種圓錐曲線,由平行於圓錐底面的平面截圓錐得到。
圓是一種幾何圖形。根據定義,通常用圓規來畫圓。 同圓內圓的直徑、半徑長度永遠相同,圓有無數條半徑和無數條直徑。圓是軸對稱、中心對稱圖形。對稱軸是直徑所在的直線。 同時,圓又是“正無限多邊形”,而“無限”只是一個概念。當多邊形的邊數越多時,其形狀、周長、面積就都越接近於圓。所以,世界上沒有真正的圓,圓實際上只是概念性的圖形。
三角形一定有內切圓,其他的圖形不一定有內切圓(一般情況下,n邊形無內切圓,但也有例外,如對邊之和相等的四邊形有內切圓。),且內切圓圓心定在三角形內部。在三角形中,三個角的角平分線的交點是內切圓的圓心,圓心到三角形各個邊的垂線段相等。
拓展資料與三角形三邊都相切的圓叫做三角形的內切圓,圓心叫做三角形的內心,三角形叫做圓的外切三角形。三角形的內心是三角形三條角平分線的交點。
在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一週所形成的封閉曲線叫做圓。圓有無數條對稱軸。在同一平面內,到定點的距離等於定長的點的集合叫做圓。圓可以表示為集合M||MO|=r,圓的標準方程是(x - a) ² + (y - b) ² = r ²。其中,o是圓心,r 是半徑。圓形是一種圓錐曲線,由平行於圓錐底面的平面截圓錐得到。
圓是一種幾何圖形。根據定義,通常用圓規來畫圓。 同圓內圓的直徑、半徑長度永遠相同,圓有無數條半徑和無數條直徑。圓是軸對稱、中心對稱圖形。對稱軸是直徑所在的直線。 同時,圓又是“正無限多邊形”,而“無限”只是一個概念。當多邊形的邊數越多時,其形狀、周長、面積就都越接近於圓。所以,世界上沒有真正的圓,圓實際上只是概念性的圖形。