cov(x,y)=EXY-EX*EY
協方差的定義,EX為隨機變數X的數學期望,同理,EXY是XY的數學期望,挺麻煩的,建議你看一下機率論cov(x,y)=EXY-EX*EY。
協方差的定義,EX為隨機變數X的數學期望,同理,EXY是XY的數學期望,挺麻煩的,建議你看一下機率論。
舉例:
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) = (1.1+1.9+3)/3=2
E(Y) = (5.0+10.4+14.6)/3=10
E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02
Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
此外:還可以計算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77
D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93
X,Y的相關係數:
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
表明這組資料X,Y之間相關性很好!
協方差(Covariance)在機率論和統計學中用於衡量兩個變數的總體誤差。而方差是協方差的一種特殊情況,即當兩個變數是相同的情況。
協方差表示的是兩個變數的總體的誤差,這與只表示一個變數誤差的方差不同。 如果兩個變數的變化趨勢一致,也就是說如果其中一個大於自身的期望值,另外一個也大於自身的期望值,那麼兩個變數之間的協方差就是正值。 如果兩個變數的變化趨勢相反,即其中一個大於自身的期望值,另外一個卻小於自身的期望值,那麼兩個變數之間的協方差就是負值。
cov(x,y)=EXY-EX*EY
協方差的定義,EX為隨機變數X的數學期望,同理,EXY是XY的數學期望,挺麻煩的,建議你看一下機率論cov(x,y)=EXY-EX*EY。
協方差的定義,EX為隨機變數X的數學期望,同理,EXY是XY的數學期望,挺麻煩的,建議你看一下機率論。
舉例:
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) = (1.1+1.9+3)/3=2
E(Y) = (5.0+10.4+14.6)/3=10
E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02
Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
此外:還可以計算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77
D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93
X,Y的相關係數:
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
表明這組資料X,Y之間相關性很好!
拓展資料協方差(Covariance)在機率論和統計學中用於衡量兩個變數的總體誤差。而方差是協方差的一種特殊情況,即當兩個變數是相同的情況。
協方差表示的是兩個變數的總體的誤差,這與只表示一個變數誤差的方差不同。 如果兩個變數的變化趨勢一致,也就是說如果其中一個大於自身的期望值,另外一個也大於自身的期望值,那麼兩個變數之間的協方差就是正值。 如果兩個變數的變化趨勢相反,即其中一個大於自身的期望值,另外一個卻小於自身的期望值,那麼兩個變數之間的協方差就是負值。