直流電機是根據通電流的導體在磁場中會受力的原理來工作的。既電工基礎中的左手定則。電動機的轉子上繞有線圈,通入電流,定子作為磁場線圈也通入電流,產生定子磁場,通電流的轉子線圈在定子磁場中,就會產生電動力,推動轉子旋轉。轉子電流是透過整流子上的碳刷連線到直流電源的。直流電動機是將直流電能轉換為機械能的電動機。因其良好的調速效能而在電力拖動中得到廣泛應用。直流電動機按勵磁方式分為永磁、他勵和自勵3類,其中自勵又分為並勵、串勵和復勵3種。當直流電源透過電刷向電樞繞組供電時,電樞表面的N極下導體可以流過相同方向的電流,根據左手定則導體將受到逆時針方向的力矩作用;電樞表面S極下部分導體也流過相同方向的電流,同樣根據左手定則導體也將受到逆時針方向的力矩作用。這樣,整個電樞繞組即轉子將按逆時針旋轉,輸入的直流電能就轉換成轉子軸上輸出的機械能。由定子和轉子組成,定子:基座,主磁極,換向極,電刷裝置等;轉子(電樞):電樞鐵心,電樞繞組,換向器,轉軸和風扇等。擴充套件資料:直流電動機的效能與它的勵磁方式密切相關,通常直流電動機的勵磁方式有4種:直流他勵電動機、直流並勵電動機、直流串勵電動機和直流復勵電動機。掌握4種方式各自的特點 :
1.直流他勵電動機: 勵磁繞組與電樞沒有電的聯絡,勵磁電路是由另外直流電源供給的。因此勵磁電流不受電樞端電壓或電樞電流的影響。
2.直流並勵電動機: 電路並聯,分流,並勵繞組兩端電壓就是電樞兩端電壓,但是勵磁繞組用細導線繞成,其匝數很多,因此具有較大的電阻,使得透過他的勵磁電流較小。
3.直流串勵電動機:電流串聯,分壓,勵磁繞組是和電樞串聯的,所以這種電動機內磁場隨著電樞電流的改變有顯著的變化。為了使勵磁繞組中不致引起大的損耗和電壓降,勵磁繞組的電阻越小越好,所以直流串勵電動機通常用較粗的導線繞成,他的匝數較少。
4.直流復勵電動機:電動機的磁通由兩個繞組內的勵磁電流產生。由於電機電樞迴路電阻和電感都較小,而轉動體具有一定的機械慣性,因此當電機接通電源後,起動的開始階段電樞轉速以及相應的反電動勢很小,起動電流很大。最大可達額定電流的15~20倍。這一電流會使電網受到擾動、機組受到機械衝擊、換向器發生火花。因此直接合閘起動只適用於功率不大於4千瓦的電動機(起動電流為額定電流的6~8倍) 。為了限制起動電流,常在電樞迴路內串入專門設計的可變電阻,其原理接線。在起動過程中隨著轉速的不斷升高及時逐級將各分段電阻短接,使起動電流限制在某一允許值以內。這種起動方法稱為串電阻起動,非常簡單,裝置輕便,廣泛應用於各種中小型直流電動機中。但由於起動過程中能量消耗大,不適於經常起動的電機和中、大型直流電動機。但對於某些特殊需要,例如城市電車雖經常起動,為了簡化裝置,減輕重量和操作維修方便,通常採用串電阻起動方法。對容量較大的直流電動機,通常採用降電壓起動。即由單獨的可調壓直流電源對電機電樞供電,控制電源電壓既可使電機平滑起動,又能實現調速。此種方法電源裝置比較複雜。
直流電機是根據通電流的導體在磁場中會受力的原理來工作的。既電工基礎中的左手定則。電動機的轉子上繞有線圈,通入電流,定子作為磁場線圈也通入電流,產生定子磁場,通電流的轉子線圈在定子磁場中,就會產生電動力,推動轉子旋轉。轉子電流是透過整流子上的碳刷連線到直流電源的。直流電動機是將直流電能轉換為機械能的電動機。因其良好的調速效能而在電力拖動中得到廣泛應用。直流電動機按勵磁方式分為永磁、他勵和自勵3類,其中自勵又分為並勵、串勵和復勵3種。當直流電源透過電刷向電樞繞組供電時,電樞表面的N極下導體可以流過相同方向的電流,根據左手定則導體將受到逆時針方向的力矩作用;電樞表面S極下部分導體也流過相同方向的電流,同樣根據左手定則導體也將受到逆時針方向的力矩作用。這樣,整個電樞繞組即轉子將按逆時針旋轉,輸入的直流電能就轉換成轉子軸上輸出的機械能。由定子和轉子組成,定子:基座,主磁極,換向極,電刷裝置等;轉子(電樞):電樞鐵心,電樞繞組,換向器,轉軸和風扇等。擴充套件資料:直流電動機的效能與它的勵磁方式密切相關,通常直流電動機的勵磁方式有4種:直流他勵電動機、直流並勵電動機、直流串勵電動機和直流復勵電動機。掌握4種方式各自的特點 :
1.直流他勵電動機: 勵磁繞組與電樞沒有電的聯絡,勵磁電路是由另外直流電源供給的。因此勵磁電流不受電樞端電壓或電樞電流的影響。
2.直流並勵電動機: 電路並聯,分流,並勵繞組兩端電壓就是電樞兩端電壓,但是勵磁繞組用細導線繞成,其匝數很多,因此具有較大的電阻,使得透過他的勵磁電流較小。
3.直流串勵電動機:電流串聯,分壓,勵磁繞組是和電樞串聯的,所以這種電動機內磁場隨著電樞電流的改變有顯著的變化。為了使勵磁繞組中不致引起大的損耗和電壓降,勵磁繞組的電阻越小越好,所以直流串勵電動機通常用較粗的導線繞成,他的匝數較少。
4.直流復勵電動機:電動機的磁通由兩個繞組內的勵磁電流產生。由於電機電樞迴路電阻和電感都較小,而轉動體具有一定的機械慣性,因此當電機接通電源後,起動的開始階段電樞轉速以及相應的反電動勢很小,起動電流很大。最大可達額定電流的15~20倍。這一電流會使電網受到擾動、機組受到機械衝擊、換向器發生火花。因此直接合閘起動只適用於功率不大於4千瓦的電動機(起動電流為額定電流的6~8倍) 。為了限制起動電流,常在電樞迴路內串入專門設計的可變電阻,其原理接線。在起動過程中隨著轉速的不斷升高及時逐級將各分段電阻短接,使起動電流限制在某一允許值以內。這種起動方法稱為串電阻起動,非常簡單,裝置輕便,廣泛應用於各種中小型直流電動機中。但由於起動過程中能量消耗大,不適於經常起動的電機和中、大型直流電動機。但對於某些特殊需要,例如城市電車雖經常起動,為了簡化裝置,減輕重量和操作維修方便,通常採用串電阻起動方法。對容量較大的直流電動機,通常採用降電壓起動。即由單獨的可調壓直流電源對電機電樞供電,控制電源電壓既可使電機平滑起動,又能實現調速。此種方法電源裝置比較複雜。