2³=8,log2 8=3,轉換就是形式的轉變,具體的轉換還是得回答冪函式上,知道冪函式,才知道對數函式。
對數函式,一般地,如果a(a大於0,且a不等於1)的b次冪等於n,那麼數b叫做以a為底n的對數,記作logan=b,讀作以a為底n的對數,其中a叫做對數的底數,n叫做真數。
一般地,函式y=log(a)x,(其中a是常數,a>0且a不等於1)叫做對數函式,它實際上就是指數函式的反函式,可表示為x=a^y。因此指數函數里對於a的規定,同樣適用於對數函式。
冪函式,一般地,形如y=x^a(a為常數)的函式,即以底數為自變數冪為因變數,指數為常量的函式稱為冪函式。
擴充套件資料:
對數的運演算法則:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指數的運演算法則:
1、[a^m]×[a^n]=a^(m+n) 【同底數冪相乘,底數不變,指數相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底數冪相除,底數不變,指數相減】
3、[a^m]^n=a^(mn) 【冪的乘方,底數不變,指數相乘】
4、[ab]^m=(a^m)×(a^m) 【積的乘方,等於各個因式分別乘方,再把所得的冪相乘】
2³=8,log2 8=3,轉換就是形式的轉變,具體的轉換還是得回答冪函式上,知道冪函式,才知道對數函式。
對數函式,一般地,如果a(a大於0,且a不等於1)的b次冪等於n,那麼數b叫做以a為底n的對數,記作logan=b,讀作以a為底n的對數,其中a叫做對數的底數,n叫做真數。
一般地,函式y=log(a)x,(其中a是常數,a>0且a不等於1)叫做對數函式,它實際上就是指數函式的反函式,可表示為x=a^y。因此指數函數里對於a的規定,同樣適用於對數函式。
冪函式,一般地,形如y=x^a(a為常數)的函式,即以底數為自變數冪為因變數,指數為常量的函式稱為冪函式。
擴充套件資料:
對數的運演算法則:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指數的運演算法則:
1、[a^m]×[a^n]=a^(m+n) 【同底數冪相乘,底數不變,指數相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底數冪相除,底數不變,指數相減】
3、[a^m]^n=a^(mn) 【冪的乘方,底數不變,指數相乘】
4、[ab]^m=(a^m)×(a^m) 【積的乘方,等於各個因式分別乘方,再把所得的冪相乘】