n階行列式實質上是一個n^2元的函式,當把n^2個元素都代上常數時,自然得到一個數。當我們寫的時候,寫成一個表是為了方便的反映函式的物性。當然,決不是指任何n^2元函式都是行列式,具體的行列式函式定義你找書一看看。為了讓你自己覺得好理解一些,你可以試著照行列式的定義把行列式寫成多項式和的常見形式,當然那個形式比較複雜,但本質上與行列式是一樣的,只是寫成行列式易於直觀的做各種運算處理。
矩陣就是一個數表,它不能從整體上被看成一個數(只有一個數的1階矩陣除外),當矩陣的行數與列數相等為n時,我們把相應的數代入上面我提到的n^2元函式中就得到一個行列式。代入的方法則是簡單的把兩個表對應起來。
在作為一個數表的矩陣上,我們本可以任意的定義運算規則(真的是指你愛怎麼定義就怎麼定義),但是實際上我們多是把矩陳用於解決某些特殊型別的問題,所以你想要知道某種運算,比如乘法運算是怎麼來的就得看年它們是做什麼用的(比如用於線性變換)。
方陣才有行列式的值
且|A|= ∑ (-1)^τ(j1j2…j3)a1j1*a2j2*…*anjn
(j1j2…j3)
上面的是定義啦 具體什麼意思也不懂 不過知道行列式的值有用就是了
n階行列式實質上是一個n^2元的函式,當把n^2個元素都代上常數時,自然得到一個數。當我們寫的時候,寫成一個表是為了方便的反映函式的物性。當然,決不是指任何n^2元函式都是行列式,具體的行列式函式定義你找書一看看。為了讓你自己覺得好理解一些,你可以試著照行列式的定義把行列式寫成多項式和的常見形式,當然那個形式比較複雜,但本質上與行列式是一樣的,只是寫成行列式易於直觀的做各種運算處理。
矩陣就是一個數表,它不能從整體上被看成一個數(只有一個數的1階矩陣除外),當矩陣的行數與列數相等為n時,我們把相應的數代入上面我提到的n^2元函式中就得到一個行列式。代入的方法則是簡單的把兩個表對應起來。
在作為一個數表的矩陣上,我們本可以任意的定義運算規則(真的是指你愛怎麼定義就怎麼定義),但是實際上我們多是把矩陳用於解決某些特殊型別的問題,所以你想要知道某種運算,比如乘法運算是怎麼來的就得看年它們是做什麼用的(比如用於線性變換)。
方陣才有行列式的值
且|A|= ∑ (-1)^τ(j1j2…j3)a1j1*a2j2*…*anjn
(j1j2…j3)
上面的是定義啦 具體什麼意思也不懂 不過知道行列式的值有用就是了