可以透過公式計算
蒸發損失E(m3/h)
E=a(R-B)
a=e(t1-t2)
a—蒸發損失率,%;
R—系統中迴圈水量,m3/h;
B—系統中排汙量,m3/h
t1,t2—迴圈冷卻水進、出冷卻塔溫度,℃;
e—損失係數,與季節有關,夏季(25~30℃)時,為0.15~0.16
冬季(-15~10℃)時,為0.06 ~0.08
春、秋季(0~10℃)時,為0.10 ~0.12
風吹損失D(m3/h)(包括飛濺、霧沫夾帶)
D=(0.2%~0.5%)R
排汙損失B(m3/h)
B=E/K-1
K-濃縮倍數
https://iknow-pic.cdn.bcebos.com/622762d0f703918f617257265f3d269758eec4bf
擴充套件資料:
水面蒸發影響因素
根據蒸發的發生機制,可將影響蒸發的因素分為兩大類:一類是物體表面以上的氣象條件,如太陽輻射、溫度、溼度、風速、氣壓等。
另一類是物體自身的因素,對於水面蒸發來說,有水體表面的面積和形狀、水深、水質和水面的狀況等因素。以下分別就這些因素作簡單的分析。
(1)太陽輻射。太陽輻射直接供給蒸發所需的能量,尤其對水面蒸發來說,太陽輻射幾乎都用於蒸發,因此,太陽輻射是影響蒸發的主要因素。太陽輻射有日變化、季節變化和年際變化,水面蒸發也會隨著這些變化而發生相應地變化。
(2)溫度。隨著水溫的增加,水分子的運動速度會加快,從而更易於逸出水面,所以水面蒸發量會隨著水面溫度的增加而增加。而直接影響水溫的主要因素是氣溫,所以氣溫的變化會影響水面蒸發的變化。但由於水面蒸發的影響因素較為複雜,氣溫的變化有時與水面蒸發規律並不十分一致。
(3)溼度。水面上方大氣的溼度增加,其中的水汽分子數量增加,飽和水汽壓差減小,水面與大氣的水汽壓差越小,水分子由水面逸出的速度越慢。因此,在相同條件下,空氣溼度越小,水面蒸發量越大。同時,溼度的變化與氣溫也有著十分密切的關係。
(4)水汽壓差。水汽壓差是指水面的水汽壓與水面上空一定高度的大氣水汽壓之差。一般來說,空氣密度越大,單位體積的水汽分子數量越多,水汽壓就越大。
反之,則水汽壓越小。大氣的水汽壓越大,水面與大氣的水汽壓差越小,水面蒸發量也越小,這與溼度變化對蒸發的影響基本一致。
(5)風速。風能夠加強空氣之間的對流和交換,使水面上空的水汽分子不斷被帶走,從而保證蒸發面與上空始終保持一定的水汽壓差,使得蒸發持續進行。在一定範圍內,風速越大,空氣流動越快,越有利於水汽在空氣中的對流和交換,從而增加水汽介面的水汽壓差,越有利於水面的蒸發。
但當風速達到一定程度時,水面的蒸發趨於穩定,此時影響相對較小。同時當冷空氣到來時,風速增加不僅不會促進水面蒸發,相反還會減少蒸發,甚至導致凝結。
(6)水面面積。水體蒸發表面是水分子汽化時必經的通道。一般來說,水面面積越大,則蒸發量越大,蒸發作用進行得越快。對於區域性區域來說,水面面積越大,其上空的水汽越不易被帶離水面區域,水面上空的水汽含量越多,越不利於水面蒸發的進行。
(7)水深。水體的深淺對水面蒸發也有一定的影響。總的來說,春夏兩季淺水比深水水面蒸發量大,秋冬兩季則相反
這是因為若水深較淺,水體的上、下部分交換相對比較容易,混合充分,水體各部分溫差小,幾乎相同,並與氣溫變化基本一致,對水面蒸發的影響較為顯著。
春夏兩季氣溫較高,水溫也較高,水面蒸發量大,秋冬兩季水面蒸發量則較小。水深較大,水溫在0~4。C變化時,水體存在“熱縮冷脹”的效應,從而使水體上下部分產生對流作用;當水溫超過4℃時,對流作用停止。
此外,水深大,水體蘊藏的熱量也大,這對水溫將起到一定調節作用,使水面蒸發量隨時間的變化顯得比較穩定。
(8)水質。水面蒸發不僅會受水量影響,而且還受到水質的影響,即水中溶解溶質多少的影響。一般來說,水中溶質的濃度越大,水體蒸發量越小,比如海水比淡水的蒸發量就小2%~3%。
這是由於溶質的存在而減小了單位水面面積內水分子的數量,即在本質上減小了純水面蒸發面積,從而減小了水體的蒸發量。
此外,水體蒸發表面若有雜物等覆蓋,水體表面接受的太陽輻射就會減少,水體蒸發量也會隨之減小。
可以透過公式計算
蒸發損失E(m3/h)
E=a(R-B)
a=e(t1-t2)
a—蒸發損失率,%;
R—系統中迴圈水量,m3/h;
B—系統中排汙量,m3/h
t1,t2—迴圈冷卻水進、出冷卻塔溫度,℃;
e—損失係數,與季節有關,夏季(25~30℃)時,為0.15~0.16
冬季(-15~10℃)時,為0.06 ~0.08
春、秋季(0~10℃)時,為0.10 ~0.12
風吹損失D(m3/h)(包括飛濺、霧沫夾帶)
D=(0.2%~0.5%)R
排汙損失B(m3/h)
B=E/K-1
K-濃縮倍數
https://iknow-pic.cdn.bcebos.com/622762d0f703918f617257265f3d269758eec4bf
擴充套件資料:
水面蒸發影響因素
根據蒸發的發生機制,可將影響蒸發的因素分為兩大類:一類是物體表面以上的氣象條件,如太陽輻射、溫度、溼度、風速、氣壓等。
另一類是物體自身的因素,對於水面蒸發來說,有水體表面的面積和形狀、水深、水質和水面的狀況等因素。以下分別就這些因素作簡單的分析。
(1)太陽輻射。太陽輻射直接供給蒸發所需的能量,尤其對水面蒸發來說,太陽輻射幾乎都用於蒸發,因此,太陽輻射是影響蒸發的主要因素。太陽輻射有日變化、季節變化和年際變化,水面蒸發也會隨著這些變化而發生相應地變化。
(2)溫度。隨著水溫的增加,水分子的運動速度會加快,從而更易於逸出水面,所以水面蒸發量會隨著水面溫度的增加而增加。而直接影響水溫的主要因素是氣溫,所以氣溫的變化會影響水面蒸發的變化。但由於水面蒸發的影響因素較為複雜,氣溫的變化有時與水面蒸發規律並不十分一致。
(3)溼度。水面上方大氣的溼度增加,其中的水汽分子數量增加,飽和水汽壓差減小,水面與大氣的水汽壓差越小,水分子由水面逸出的速度越慢。因此,在相同條件下,空氣溼度越小,水面蒸發量越大。同時,溼度的變化與氣溫也有著十分密切的關係。
(4)水汽壓差。水汽壓差是指水面的水汽壓與水面上空一定高度的大氣水汽壓之差。一般來說,空氣密度越大,單位體積的水汽分子數量越多,水汽壓就越大。
反之,則水汽壓越小。大氣的水汽壓越大,水面與大氣的水汽壓差越小,水面蒸發量也越小,這與溼度變化對蒸發的影響基本一致。
(5)風速。風能夠加強空氣之間的對流和交換,使水面上空的水汽分子不斷被帶走,從而保證蒸發面與上空始終保持一定的水汽壓差,使得蒸發持續進行。在一定範圍內,風速越大,空氣流動越快,越有利於水汽在空氣中的對流和交換,從而增加水汽介面的水汽壓差,越有利於水面的蒸發。
但當風速達到一定程度時,水面的蒸發趨於穩定,此時影響相對較小。同時當冷空氣到來時,風速增加不僅不會促進水面蒸發,相反還會減少蒸發,甚至導致凝結。
(6)水面面積。水體蒸發表面是水分子汽化時必經的通道。一般來說,水面面積越大,則蒸發量越大,蒸發作用進行得越快。對於區域性區域來說,水面面積越大,其上空的水汽越不易被帶離水面區域,水面上空的水汽含量越多,越不利於水面蒸發的進行。
(7)水深。水體的深淺對水面蒸發也有一定的影響。總的來說,春夏兩季淺水比深水水面蒸發量大,秋冬兩季則相反
這是因為若水深較淺,水體的上、下部分交換相對比較容易,混合充分,水體各部分溫差小,幾乎相同,並與氣溫變化基本一致,對水面蒸發的影響較為顯著。
春夏兩季氣溫較高,水溫也較高,水面蒸發量大,秋冬兩季水面蒸發量則較小。水深較大,水溫在0~4。C變化時,水體存在“熱縮冷脹”的效應,從而使水體上下部分產生對流作用;當水溫超過4℃時,對流作用停止。
此外,水深大,水體蘊藏的熱量也大,這對水溫將起到一定調節作用,使水面蒸發量隨時間的變化顯得比較穩定。
(8)水質。水面蒸發不僅會受水量影響,而且還受到水質的影響,即水中溶解溶質多少的影響。一般來說,水中溶質的濃度越大,水體蒸發量越小,比如海水比淡水的蒸發量就小2%~3%。
這是由於溶質的存在而減小了單位水面面積內水分子的數量,即在本質上減小了純水面蒸發面積,從而減小了水體的蒸發量。
此外,水體蒸發表面若有雜物等覆蓋,水體表面接受的太陽輻射就會減少,水體蒸發量也會隨之減小。