反硝化作用(denitrification) 也稱脫氮作用。反硝化細菌在缺氧條件下,還原硝酸鹽,釋放出分子態氮(N2)或一氧化二氮(N2O)的過程。微生物和植物吸收利用硝酸鹽有兩種完全不同的用途,一是利用其中的氮作為氮源,稱為同化性硝酸還原作用:NO3-→NH4+→有機態氮。許多細菌、放線菌和黴菌能利用硝酸鹽做為氮素營養。另一用途是利用NO2-和NO3-為呼吸作用的最終電子受體,把硝酸還原成氮(N2),稱為反硝化作用或脫氮作用:NO3-→NO2-→N2↑。能進行反硝化作用的只有少數細菌,這個生理群稱為反硝化菌。大部分反硝化細菌是異養菌,例如脫氮小球菌、反硝化假單胞菌等,它們以有機物為氮源和能源,進行無氧呼吸,其生化過程可用下式表示: C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量 CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量 少數反硝化細菌為自養菌,如脫氮硫桿菌,它們氧化硫或硝酸鹽獲得能量,同化二氧化碳,以硝酸鹽為呼吸作用的最終電子受體。可進行以下反應: 5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4 反硝化作用使硝酸鹽還原成氮氣,從而降低了土壤中氮素營養的含量,對農業生產不利。農業上常進行中耕鬆土,以防止反硝化作用。反硝化作用是氮素迴圈中不可缺少的環節,可使土壤中因淋溶而流入河流、海洋中的NO3-減少,消除因硝酸積累對生物的毒害作用。硝化:自氨氧化為亞硝酸鹽的過程是由兩群微生物完成:氨氧化細菌(AOB)與氨氧化古菌(AOA)[1]。氨氧化細菌可在變形菌門的β-變形菌綱與γ-變形菌綱中找到[2]目前,只分離與發現了一種氨氧化古菌——亞硝化侏儒菌屬[3] [4]。研究最多的土壤中的氨氧化細菌屬於亞硝化單胞菌屬與亞硝化球菌屬。儘管在土壤中氨氧化同時發生在細菌和古菌之中,但古菌的氨氧化作用卻同時在土壤以及海洋環境中佔首要地位[5][6],這意味著泉古菌門可能是這些環境中最大的氨氧化作用貢獻者。第二步(將亞硝酸鹽氧化為硝酸鹽的步驟)主要是由細菌中的硝化桿菌屬來完成。以上步驟都會產生能量並偶聯合成腺苷三磷酸。硝化有機體都是化能自養菌並且利用二氧化碳作為他們生長的碳源。一些氨氧化細菌具有一種稱為脲酶的酶,這種酶催化尿素分子分解為兩分子的氨以及一分子的二氧化碳。人們發現歐洲亞硝化單胞菌與土壤生的氨氧化細菌群一樣,可以透過卡爾文迴圈同化脲酶反應生成的二氧化碳以產生生物質能,並透過將氨(脲酶的另一產物)氧化為亞硝酸鹽的過程收穫能量。這一特性可解釋為什麼在酸性環境中存在尿素的情況下會促進氨氧化細菌的生長[7]。硝化作用也在城市廢水脫氮過程中起著重要作用。常規的脫氮是先施以硝化作用接著再進行反硝化作用。這一過程的消耗主要是花在了曝氣(將氧氣帶進反應器的過程)以及為反硝化作用提供額外碳源(例如甲醇)上。硝化作用也會發生在飲用水中。在上水分配系統中,氯胺常被用於二次消毒劑,存在的自由氨可以作為氨氧化微生物的底物。這一相關的反應可以使得系統中消毒劑的殘餘量減少[8]。在多數環境中可以同時找到上述生物,它們產生的最終產物是硝酸鹽。然而,可以設計一個只產生亞硝酸鹽的系統(見沙倫工藝)。硝化作用和氨化作用一起形成了無機化過程,該過程指的是將有機物完全分解並釋放可用含氮化合物的過程。這一過程將氮迴圈補充完整。
反硝化作用(denitrification) 也稱脫氮作用。反硝化細菌在缺氧條件下,還原硝酸鹽,釋放出分子態氮(N2)或一氧化二氮(N2O)的過程。微生物和植物吸收利用硝酸鹽有兩種完全不同的用途,一是利用其中的氮作為氮源,稱為同化性硝酸還原作用:NO3-→NH4+→有機態氮。許多細菌、放線菌和黴菌能利用硝酸鹽做為氮素營養。另一用途是利用NO2-和NO3-為呼吸作用的最終電子受體,把硝酸還原成氮(N2),稱為反硝化作用或脫氮作用:NO3-→NO2-→N2↑。能進行反硝化作用的只有少數細菌,這個生理群稱為反硝化菌。大部分反硝化細菌是異養菌,例如脫氮小球菌、反硝化假單胞菌等,它們以有機物為氮源和能源,進行無氧呼吸,其生化過程可用下式表示: C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量 CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量 少數反硝化細菌為自養菌,如脫氮硫桿菌,它們氧化硫或硝酸鹽獲得能量,同化二氧化碳,以硝酸鹽為呼吸作用的最終電子受體。可進行以下反應: 5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4 反硝化作用使硝酸鹽還原成氮氣,從而降低了土壤中氮素營養的含量,對農業生產不利。農業上常進行中耕鬆土,以防止反硝化作用。反硝化作用是氮素迴圈中不可缺少的環節,可使土壤中因淋溶而流入河流、海洋中的NO3-減少,消除因硝酸積累對生物的毒害作用。硝化:自氨氧化為亞硝酸鹽的過程是由兩群微生物完成:氨氧化細菌(AOB)與氨氧化古菌(AOA)[1]。氨氧化細菌可在變形菌門的β-變形菌綱與γ-變形菌綱中找到[2]目前,只分離與發現了一種氨氧化古菌——亞硝化侏儒菌屬[3] [4]。研究最多的土壤中的氨氧化細菌屬於亞硝化單胞菌屬與亞硝化球菌屬。儘管在土壤中氨氧化同時發生在細菌和古菌之中,但古菌的氨氧化作用卻同時在土壤以及海洋環境中佔首要地位[5][6],這意味著泉古菌門可能是這些環境中最大的氨氧化作用貢獻者。第二步(將亞硝酸鹽氧化為硝酸鹽的步驟)主要是由細菌中的硝化桿菌屬來完成。以上步驟都會產生能量並偶聯合成腺苷三磷酸。硝化有機體都是化能自養菌並且利用二氧化碳作為他們生長的碳源。一些氨氧化細菌具有一種稱為脲酶的酶,這種酶催化尿素分子分解為兩分子的氨以及一分子的二氧化碳。人們發現歐洲亞硝化單胞菌與土壤生的氨氧化細菌群一樣,可以透過卡爾文迴圈同化脲酶反應生成的二氧化碳以產生生物質能,並透過將氨(脲酶的另一產物)氧化為亞硝酸鹽的過程收穫能量。這一特性可解釋為什麼在酸性環境中存在尿素的情況下會促進氨氧化細菌的生長[7]。硝化作用也在城市廢水脫氮過程中起著重要作用。常規的脫氮是先施以硝化作用接著再進行反硝化作用。這一過程的消耗主要是花在了曝氣(將氧氣帶進反應器的過程)以及為反硝化作用提供額外碳源(例如甲醇)上。硝化作用也會發生在飲用水中。在上水分配系統中,氯胺常被用於二次消毒劑,存在的自由氨可以作為氨氧化微生物的底物。這一相關的反應可以使得系統中消毒劑的殘餘量減少[8]。在多數環境中可以同時找到上述生物,它們產生的最終產物是硝酸鹽。然而,可以設計一個只產生亞硝酸鹽的系統(見沙倫工藝)。硝化作用和氨化作用一起形成了無機化過程,該過程指的是將有機物完全分解並釋放可用含氮化合物的過程。這一過程將氮迴圈補充完整。